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Survey a few developments in geometric intersection graphs:
between minor and induced minor theory
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Excluding minors vs. excluding induced minors

Excludes K5 as a minor



Excluding minors vs. excluding induced minors

Does not exclude any minor



Excluding minors vs. excluding induced minors

Does not exclude any minor



Excluding minors vs. excluding induced minors

Yet is a bounded-degree unit disk graph



Excluding minors vs. excluding induced minors

Excludes the 1-subdivision of K5 as an induced minor



String graphs



String graphs

and region intersection graphs

Region Intersection Graph (RIG) over a graph or graph class



String graphs and region intersection graphs

Region Intersection Graph (RIG) over a graph or graph class



String graphs and region intersection graphs

RIG({Kt-minor-free}) excludes K (1)
t as induced minor



Unbounded balanced separators

S⩽ 2n/3 ⩽ 2n/3



Clique-based separators

– subexponential algorithms

Balanced separator S partitioned into “few” cliques C1, C2, . . .

Weight of S: w(S) :=
∑
i

log(|V (Ci)| + 1)

Theorem (de Berg, Bodlaender, Kisfaludi-Bak, Marx, van der Zanden ’20)
Intersection graphs of fat objects in Rd admit clique-based
separator of weight O(n1− 1

d ).

At most
∏
i
(|V (Ci)| + 1) = 2w(S) independent sets within S

T (n) ⩽ 2w(S)T (2n/3) → 2O(w(S))-time algorithm for MIS

Clique-based separators of sublinear weight on pseudodisk graphs,
map graphs, geodesic disks in subsets of R2, etc.
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Intersection graphs of fat objects in Rd admit clique-based
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At most
∏
i
(|V (Ci)|2 + 1) ⩽ 22w(S) induced forests within S

→ 2O(w(S))-time algorithm for Feedback Vertex Set

Clique-based separators of sublinear weight on pseudodisk graphs,
map graphs, geodesic disks in subsets of R2, etc.
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Balanced separator S partitioned into “few” cliques C1, C2, . . .

Weight of S: w(S) :=
∑
i

log(|V (Ci)| + 1)

Theorem (de Berg, Bodlaender, Kisfaludi-Bak, Marx, van der Zanden ’20)
Intersection graphs of fat objects in Rd admit clique-based
separator of weight O(n1− 1
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map graphs, geodesic disks in subsets of R2, etc.



Clique-based separators – off-by-1 distance oracle (DO)

Space/query time trade-off between distance matrix and Dijkstra

Following [Aronov, de Berg, Theocharous ’24]

C1

C2 C3

C4

C5

⩽ 2n/3 ⩽ 2n/3

S

vd(v , C3)

u
d(u, C3)

Store distance of every v ∈ V (G) to every Ci of S: n · nβ = n1+β:
min

i
d(u, Ci) + d(v , Ci) + 1.
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Clique-based separators – off-by-1 distance oracle (DO)

Space/query time trade-off between distance matrix and Dijkstra

Following [Aronov, de Berg, Theocharous ’24]

C1

C2 C3

C4

C5

⩽ 2n/3 ⩽ 2n/3

S

vd(v , C3)

u
d(u, C3)

Recurse on the components of G − S → O(n1+β) stored values

:
min

i
d(u, Ci) + d(v , Ci) + 1.



Clique-based separators – off-by-1 distance oracle (DO)

Space/query time trade-off between distance matrix and Dijkstra

Following [Aronov, de Berg, Theocharous ’24]

C1

C2 C3

C4

C5

⩽ 2n/3 ⩽ 2n/3

S

vd(v , C3)

u
d(u, C3)

d(u, v)? If u and v are on ̸= comp. of G − S:
min

i
d(u, Ci) + d(v , Ci) + 1



Clique-based separators – off-by-1 distance oracle (DO)

Space/query time trade-off between distance matrix and Dijkstra

Following [Aronov, de Berg, Theocharous ’24]

C1

C2 C3

C4

C5

⩽ 2n/3 ⩽ 2n/3

S

vd(v , C3)

u
d(u, C3)

d(u, v)? Otherwise, recurse and take the min with
min

i
d(u, Ci) + d(v , Ci) + 1



Clique-based separators – off-by-1 distance oracle (DO)

Space/query time trade-off between distance matrix and Dijkstra

Following [Aronov, de Berg, Theocharous ’24]

C1

C2 C3

C4

C5

⩽ 2n/3 ⩽ 2n/3

S

vd(v , C3)

u
d(u, C3)

Subquadratic space O(n1+β) and sublinear query time O(nβ)

:
min

i
d(u, Ci) + d(v , Ci) + 1.



Clique-based separators – off-by-1 distance oracle (DO)

Space/query time trade-off between distance matrix and Dijkstra

Following [Aronov, de Berg, Theocharous ’24]

C1

C2 C3

C4

C5

⩽ 2n/3 ⩽ 2n/3

S

vd(v , C3)

u
d(u, C3)

Each Ci has weak diameter at most d → off-by-d DO

:
min

i
d(u, Ci) + d(v , Ci) + 1.



Tree-independence number

Treewidth where bag “size” is max independent set within the bag

Theorem (Dallard, Fomin, Golovach, Korhonen, Milanič ’24)
Tree-independence number k is 8-approximable in 2O(k2)nO(k).

nΩ(k) is likely needed (GAP-ETH) but not the 2O(k2) factor
Given such a decomposition, MIS can be solved in nO(k)

“Treewidth vs. clique number” and “Tree-independence number”
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Balanced separators dominated by few vertices

Theorem (Robertson, Seymour ’86)
Graphs excluding a grid as minor have balanced separators of
constant size.

Conjecture (Gartland–Lokshtanov)
Graphs excluding a grid as induced minor have balanced separators
dominated by a constant number of vertices.

Known in some classes: Pt-free graphs, even-hole-free graphs, etc.

Geometric intersection classes?
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Contraction Decomposition – parameterized algorithms
Baker’s approach by contracting instead of deleting

Edge Contraction Decomposition:
Partition E1, . . . , Ep of E (G) s.t. tw(G/Ei) = O(p), ∀i ∈ [p].
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Edge Contraction Decomposition:
Partition E1, . . . , Ep of E (G) s.t. tw(G/Ei) = O(p), ∀i ∈ [p].



Contraction Decomposition – parameterized algorithms
Baker’s approach by contracting instead of deleting

Π: remove k edges such that... (think Edge Multiway Cut)
Set p =

√
k, guess i and S ∩ Ei for a smallest S ∩ Ei in

√
k · n2

√
k



Contraction Decomposition – parameterized algorithms
Baker’s approach by contracting instead of deleting

Π: remove k edges such that... (think Edge Multiway Cut)
Solve G/(Ei \ S) as its treewidth is at most O(p) +

√
k = O(p)



Contraction Decomposition – parameterized algorithms
Baker’s approach by contracting instead of deleting

Π: remove k edges such that...
nO(

√
k) if nO(tw) algorithm, 2O(

√
k)nO(1) if polynomial kernel, too



Contraction Decomposition – parameterized algorithms
Baker’s approach by contracting instead of deleting

Π: remove k edges such that...
It breaks for vertex variants



Robust Vertex Contraction Decomposition

Vertex Contraction Decomposition: Partition V1, . . . , Vp of V (G)
s.t. tw(G/EVi \S) = O(p + |S|), ∀i ∈ [p] and ∀S ⊆ Vi .

Theorem (Bandyapadhyay, Lochet, Lokshtanov, Marx, Misra, Neuen, Saurabh, Tale, Xue ’25)
H-minor-free graphs admit a Vertex Contraction Decomposition.
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Robust Vertex Contraction Decomposition – UDGs

1

E□

UDG Vertex Contraction Decomposition: □-preserving partition
V1, . . . , Vp s.t. tw(G/EVi \S ∪ E□) = O(p + |S|), ∀i ∈ [p], S ⊆ Vi .

Theorem (Bandyapadhyay, Lochet, Lokshtanov, Saurabh, Xue ’24)
Unit disk graphs admit a UDG Vertex Contraction Decomposition.
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Local radius of disk graphs – EPTASes

D

Local radius of D = radius of dual graph of arrangement ∩D
Local radius of G = minR of G maxD∈R local radius of D



Local radius of disk graphs – EPTASes

D

Theorem (Lokshtanov, Panolan, Saurabh, Xue, Zehavi ’23)
▶ low local radius → linearly bounded local treewidth (Baker)
▶ EPTAS-preserving reduction to low local radius



Bounded weak-diameter colorings
Weak-diameter-d k-coloring of G : (improper) k-coloring of G such
that every pair of vertices in a same monochromatic component is
at distance at most d in G .

Weak-diameter-2 3-coloring



Bounded weak-diameter colorings
Weak-diameter-d k-coloring of G : (improper) k-coloring of G such
that every pair of vertices in a same monochromatic component is
at distance at most d in G .

Weak-diameter-2 3-coloring



Bounded weak-diameter colorings
Weak-diameter-d k-edge-coloring of G : (improper) k-edge-coloring
of G such that every pair of vertices in a same monochromatic
component is at distance at most d in G .

Weak-diameter-2 3-edge-coloring



Applications of bounded weak-diameter colorings
Closely related to padded and low-diameter decompositions

Various applications in approximation algorithms, distributed
algorithms, spanners, routing, induced minor theory, etc.

Weak-diameter-d k-coloring → (∆ + 1)-coloring in O(dk) rounds

their induced subgraph and broadcasts the (∆ + 1)-coloring



Applications of bounded weak-diameter colorings
Closely related to padded and low-diameter decompositions

Various applications in approximation algorithms, distributed
algorithms, spanners, routing, induced minor theory, etc.

In O(d) rounds, a delegate per component of the first color collects
their induced subgraph and broadcasts the (∆ + 1)-coloring



Applications of bounded weak-diameter colorings
Closely related to padded and low-diameter decompositions

Various applications in approximation algorithms, distributed
algorithms, spanners, routing, induced minor theory, etc.

1
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2

2 1
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3 1

Then we move to the second color, etc.

their induced subgraph and broadcasts the (∆ + 1)-coloring



Bounded weak-diameter colorings for minor-free classes
Theorem (Klein, Plotkin, Rao ’93)
Every Kh-minor-free graph admits a weak-diameter-f (h)
2O(h)(-edge)-coloring with f (h) = O(h2).

G

H1

H2

H3

G

· · · H1 H2 H3 · · ·

branching tree

While the processed component has weak diameter > f (h),
start a BFS at an arbitrary vertex
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Bounded weak-diameter colorings for minor-free classes
Theorem (Klein, Plotkin, Rao ’93)
Every Kh-minor-free graph admits a weak-diameter-f (h)
2O(h)(-edge)-coloring with f (h) = O(h2).

G

H1

H2

H3

G

· · · H1 H2 H3 · · ·

branching tree

and recurse on every connected component of every subgraph
induced by O(1) consecutive layers.



Bounded weak-diameter colorings for minor-free classes
Theorem (Klein, Plotkin, Rao ’93)
Every Kh-minor-free graph admits a weak-diameter-f (h)
2O(h)(-edge)-coloring with f (h) = O(h2).

G

H1

H2

H3

G

· · · H1 H2 H3 · · ·

branching tree

Claim: The branching tree has depth at most h + 1.



Bounded weak-diameter colorings for minor-free classes

A1(i) A2(i) A3(i) Ah(i)

B1 B2 Gi

O(1) consecutive
layers in Ti−1

root of Ti−1

B3

P1(i)

P2(i) P3(i) Ph(i)

Gi−1

O(1) consecutive layers in Ti−2

P1(i − 1)

P2(i − 1)

P3(i − 1)
Ph(i − 1)

root of Ti−2

Say there is a branch G1, G2, . . . , Gh+2 in the branching tree



Bounded weak-diameter colorings for minor-free classes

A1(i) A2(i) A3(i) Ah(i)

B1 B2 Gi

O(1) consecutive
layers in Ti−1

root of Ti−1

B3

P1(i)

P2(i) P3(i) Ph(i)

Gi−1

O(1) consecutive layers in Ti−2

P1(i − 1)

P2(i − 1)

P3(i − 1)
Ph(i − 1)

root of Ti−2

A1(h + 1), . . . , Ah(h + 1) ⊂ V (Gh+1) far apart in G is a Kh,0 minor



Bounded weak-diameter colorings for minor-free classes
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root of Ti−2

Rewinding back to G1 builds a Kh,h minor



Bounded weak-diameter colorings for minor-free classes

A1(i) A2(i) A3(i) Ah(i)

B1 B2 Gi

O(1) consecutive
layers in Ti−1

root of Ti−1

B3

P1(i)

P2(i) P3(i) Ph(i)

Gi−1

O(1) consecutive layers in Ti−2

P1(i − 1)

P2(i − 1)

P3(i − 1)
Ph(i − 1)

root of Ti−2

Rewinding back to G1 builds a Kh,h (induced!) minor



Bounded weak-diameter colorings for ind-minor-free classes

A1(i) A2(i) A3(i) Ah(i)

B1 B2 Gi

O(1) consecutive
layers in Ti−1

root of Ti−1

B3

P1(i)

P2(i) P3(i) Ph(i)

Gi−1

O(1) consecutive layers in Ti−2

P1(i − 1)

P2(i − 1)

P3(i − 1)
Ph(i − 1)

root of Ti−2

Can we build an induced minor model of the 1-subdivision of Kh,h?



Weak-diameter colorings beyond minor-free classes

Question
Are there f , g such that every K (1)

h -induced-minor-free graph has
a weak-diameter-f (h) g(h)(-edge)-coloring?

Theorem (Davies ’25+)
Every region intersection graph G over some Kh-minor free H has
a weak-diameter-O(h2) 2O(h)(-edge)-coloring.

Twist the metric in G based on its representation in H

Can it be made robust?

Could it be that every class excluding an induced minor is
contained in RIG({Kh-minor-free}) for some fixed h?
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Weak-diameter colorings beyond minor-free classes
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Are there f , g such that every K (1)

h -induced-minor-free graph has
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Theorem (Davies ’25+)
Every region intersection graph G over some Kh-minor free H has
a weak-diameter-O(h2) 2O(h)(-edge)-coloring.

Twist the metric in G based on its representation in H

Can it be made robust?

Could it be that every class excluding an induced minor is
contained in RIG({Kh-minor-free}) for some fixed h?



Extending the Pohoata-Davies grid

Theorem (B., Hickingbotham ’25+)
For every h, there is a K (1)

6 -induced-minor-free graph that is not
a region intersection graph over Kh-minor free graphs.

replaced by disjoint union of 1-subdivided apex grids

Excludes three cycles with paths bridging any two cycles and
avoiding the neighborhood of the third



Extending the Pohoata-Davies grid

Theorem (B., Hickingbotham ’25+)
For every h, there is a K (1)

6 -induced-minor-free graph that is not
a region intersection graph over Kh-minor free graphs.

replaced by disjoint union of 1-subdivided apex grids

Still excludes an induced minor, but is no longer in
RIG({Kh-minor-free}) for any h



Balanced separators of string graphs

Theorem (Matoušek ’13)
Every m-edge string graph has treewidth O(

√
m log m).

Theorem (Lee ’17 & Davies ’25+)
Every m-edge string graph has treewidth O(

√
m).

Fox and Pach first observed that this yields a subexponential
algorithm for Max Independent Set

1. While there is a vertex of degree at least n1/3, branch on
adding it to the solution or removing it from the graph.

2. At the leaves, graphs have treewidth O(
√

n1/3 · n) = O(n2/3).

1. takes time 2Õ(n2/3), and each leaf of 2. takes time 2O(n2/3)
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Tight ETH bounds in string graphs

Theorem (Fox, Pach ’11; B., Rzążewski ’19)
Max Independent Set, Feedback Vertex Set,
3-Coloring can be solved in time 2O(n2/3), and requires 2Ω(n1/2)

under the ETH.

Theorem (Marx, Pilipczuk ’15)
Max Independent Set in n-vertex string graphs given with
a representation of size s can be solved in time 2Õ(n1/2)sO(1).

What is the correct exponent?



Approximating Max Independent Set in string graphs

Theorem (Adamaszek, Har-Peled, Wiese ’19)
Max Independent Set in string graphs given with
a polynomial-size representation admits a QPTAS.

Theorem (Fox, Pach ’11)
Max Independent Set in O(1)-string graphs admits
a nε-approximation in time nf (ε).

We currently cannot rule out:

Conjecture (most optimistic)
For every H, Max Independent Set in H-induced-minor-free
graphs admits a PTAS.
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Max Independent Set in string graphs given with
a polynomial-size representation admits a QPTAS.

Theorem (Fox, Pach ’11)
Max Independent Set in O(1)-string graphs admits
a nε-approximation in time nf (ε).

We currently cannot rule out:

Conjecture (most optimistic)
For every H, Max Independent Set in H-induced-minor-free
graphs admits a PTAS.



Balanced separators of induced-minor-free graphs

Theorem (Korhonen, Lokshtanov ’24)
Every m-edge H-induced-minor-free graph has treewidth ÕH(

√
m).

≈ same algorithmic applications

Question
Can it be improved to OH(

√
m)?



Things I did not mention

▶ the use of Voronoi diagrams of graphs
▶ the use of (distance) VC dimension for Diameter
▶ new parameters and how they relate to intersection graphs

Thank you for your attention!
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