Developments in Geometric Intersection Graphs

Édouard Bonnet

ENS Lyon, LIP

May 19th 2025, Metric Sketching and Dynamic Algorithms for Geometric and Topological Graphs Dagstuhl Seminar

Outline

Survey a few developments in geometric intersection graphs: between minor and induced minor theory

Minor and Induced Minor

Minor and Induced Minor

H is an induced minor of G

Minor and Induced Minor

H is a minor of G

Excludes K_5 as a minor

Does not exclude any minor

Does not exclude any minor

Yet is a bounded-degree unit disk graph

Excludes the 1-subdivision of K_5 as an induced minor

String graphs

String graphs

String graphs and region intersection graphs

Region Intersection Graph (RIG) over a graph or graph class

String graphs and region intersection graphs

 $RIG({K_t-minor-free})$ excludes $K_t^{(1)}$ as induced minor

Unbounded balanced separators

Clique-based separators

Balanced separator S partitioned into "few" cliques $C_1, C_2, ...$ Weight of S: $w(S) := \sum_i \log(|V(C_i)| + 1)$

Theorem (de Berg, Bodlaender, Kisfaludi-Bak, Marx, van der Zanden '20) Intersection graphs of fat objects in \mathbb{R}^d admit clique-based separator of weight $O(n^{1-\frac{1}{d}})$.

Clique-based separators – subexponential algorithms

Balanced separator S partitioned into "few" cliques $C_1, C_2, ...$ Weight of S: $w(S) := \sum_i \log(|V(C_i)| + 1)$

Theorem (de Berg, Bodlaender, Kisfaludi-Bak, Marx, van der Zanden '20) Intersection graphs of fat objects in \mathbb{R}^d admit clique-based separator of weight $O(n^{1-\frac{1}{d}})$.

At most $\prod_{i}(|V(C_i)|+1) = 2^{w(S)}$ independent sets within S $T(n) \leq 2^{w(S)}T(2n/3) \rightarrow 2^{O(w(S))}$ -time algorithm for MIS

Clique-based separators – subexponential algorithms

Balanced separator S partitioned into "few" cliques $C_1, C_2, ...$ Weight of S: $w(S) := \sum_i \log(|V(C_i)| + 1)$

Theorem (de Berg, Bodlaender, Kisfaludi-Bak, Marx, van der Zanden '20) Intersection graphs of fat objects in \mathbb{R}^d admit clique-based separator of weight $O(n^{1-\frac{1}{d}})$.

At most $\prod_{i} (|V(C_i)|^2 + 1) \leq 2^{2w(S)}$ induced forests within $S \rightarrow 2^{O(w(S))}$ -time algorithm for FEEDBACK VERTEX SET

Clique-based separators – subexponential algorithms

Balanced separator S partitioned into "few" cliques $C_1, C_2, ...$ Weight of S: $w(S) := \sum_i \log(|V(C_i)| + 1)$

Theorem (de Berg, Bodlaender, Kisfaludi-Bak, Marx, van der Zanden '20) Intersection graphs of fat objects in \mathbb{R}^d admit clique-based separator of weight $O(n^{1-\frac{1}{d}})$.

Clique-based separators of sublinear weight on pseudodisk graphs, map graphs, geodesic disks in subsets of \mathbb{R}^2 , etc.

 $\mathsf{Space}/\mathsf{query}$ time trade-off between distance matrix and $\mathsf{Dijkstra}$

Following [Aronov, de Berg, Theocharous '24]

Space/query time trade-off between distance matrix and Dijkstra Following [Aronov, de Berg, Theocharous '24]

Store distance of every $v \in V(G)$ to every C_i of $S: n \cdot n^{\beta} = n^{1+\beta}$

Space/query time trade-off between distance matrix and Dijkstra Following [Aronov, de Berg, Theocharous '24]

Recurse on the components of $G - S \rightarrow O(n^{1+\beta})$ stored values

Space/query time trade-off between distance matrix and Dijkstra Following [Aronov, de Berg, Theocharous '24]

d(u, v)? If u and v are on \neq comp. of G - S: $\min_{i} d(u, C_{i}) + d(v, C_{i}) + 1$

 $\ensuremath{\mathsf{Space}}\xspace/\ensuremath{\mathsf{query}}\xspace$ time trade-off between distance matrix and Dijkstra

Following [Aronov, de Berg, Theocharous '24]

d(u, v)? Otherwise, recurse and take the min with $\min_i d(u, C_i) + d(v, C_i) + 1$

 $\ensuremath{\mathsf{Space}}\xspace/\ensuremath{\mathsf{query}}\xspace$ time trade-off between distance matrix and Dijkstra

Following [Aronov, de Berg, Theocharous '24]

Subquadratic space $O(n^{1+\beta})$ and sublinear query time $O(n^{\beta})$

Space/query time trade-off between distance matrix and Dijkstra

Following [Aronov, de Berg, Theocharous '24]

Each C_i has weak diameter at most d \rightarrow off-by-d DO

Tree-independence number

Treewidth where bag "size" is max independent set within the bag

Theorem (Dallard, Fomin, Golovach, Korhonen, Milanič '24) Tree-independence number k is 8-approximable in $2^{O(k^2)}n^{O(k)}$.

 $n^{\Omega(k)}$ is likely needed (GAP-ETH) but not the $2^{O(k^2)}$ factor Given such a decomposition, MIS can be solved in $n^{O(k)}$

Tree-independence number

Treewidth where bag "size" is max independent set within the bag

Theorem (Dallard, Fomin, Golovach, Korhonen, Milanič '24) Tree-independence number k is 8-approximable in $2^{O(k^2)}n^{O(k)}$.

 $n^{\Omega(k)}$ is likely needed (GAP-ETH) but not the $2^{O(k^2)}$ factor Given such a decomposition, MIS can be solved in $n^{O(k)}$

"Treewidth vs. clique number" and "Tree-independence number"

Balanced separators dominated by few vertices

Theorem (Robertson, Seymour '86)

Graphs excluding a grid as minor have balanced separators of constant size.

Conjecture (Gartland–Lokshtanov)

Graphs excluding a grid as induced minor have balanced separators dominated by a constant number of vertices.

Balanced separators dominated by few vertices

Theorem (Robertson, Seymour '86)

Graphs excluding a grid as minor have balanced separators of constant size.

Conjecture (Gartland–Lokshtanov)

Graphs excluding a grid as induced minor have balanced separators dominated by a constant number of vertices.

Known in some classes: P_t -free graphs, even-hole-free graphs, etc.

Geometric intersection classes?

Baker's approach by contracting instead of deleting

Edge Contraction Decomposition: Partition E_1, \ldots, E_p of E(G) s.t. $tw(G/E_i) = O(p), \forall i \in [p]$.

Baker's approach by contracting instead of deleting

Edge Contraction Decomposition: Partition E_1, \ldots, E_p of E(G) s.t. $tw(G/E_i) = O(p), \forall i \in [p]$.

Baker's approach by contracting instead of deleting

Π: remove k edges such that... (think EDGE MULTIWAY CUT) Set $p = \sqrt{k}$, guess i and $S \cap E_i$ for a smallest $S \cap E_i$ in $\sqrt{k} \cdot n^{2\sqrt{k}}$

Baker's approach by contracting instead of deleting

Π: remove k edges such that... (think EDGE MULTIWAY CUT) Solve $G/(E_i \setminus S)$ as its treewidth is at most $O(p) + \sqrt{k} = O(p)$

Baker's approach by contracting instead of deleting

 $\Pi: \text{ remove } k \text{ edges such that...} \\ n^{O(\sqrt{k})} \text{ if } n^{O(\text{tw})} \text{ algorithm, } 2^{O(\sqrt{k})} n^{O(1)} \text{ if polynomial kernel, too}$

Baker's approach by contracting instead of deleting

 Π : remove *k* edges such that... It breaks for vertex variants
Robust Vertex Contraction Decomposition

Vertex Contraction Decomposition: Partition V_1, \ldots, V_p of V(G)s.t. $tw(G/E_{V_i \setminus S}) = O(p + |S|), \forall i \in [p] \text{ and } \forall S \subseteq V_i.$

Robust Vertex Contraction Decomposition

Vertex Contraction Decomposition: Partition V_1, \ldots, V_p of V(G)s.t. $tw(G/E_{V_i \setminus S}) = O(p + |S|), \forall i \in [p] \text{ and } \forall S \subseteq V_i.$

Robust Vertex Contraction Decomposition

Vertex Contraction Decomposition: Partition V_1, \ldots, V_p of V(G)s.t. $tw(G/E_{V_i \setminus S}) = O(p + |S|), \forall i \in [p] \text{ and } \forall S \subseteq V_i.$

Theorem (Bandyapadhyay, Lochet, Lokshtanov, Marx, Misra, Neuen, Saurabh, Tale, Xue '25) H-minor-free graphs admit a Vertex Contraction Decomposition.

Robust Vertex Contraction Decomposition – UDGs

UDG Vertex Contraction Decomposition: \Box -preserving partition V_1, \ldots, V_p s.t. tw $(G/E_{V_i \setminus S} \cup E_{\Box}) = O(p + |S|), \forall i \in [p], S \subseteq V_i$.

Robust Vertex Contraction Decomposition – UDGs

UDG Vertex Contraction Decomposition: \Box -preserving partition V_1, \ldots, V_p s.t. tw $(G/E_{V_i \setminus S} \cup E_{\Box}) = O(p + |S|), \forall i \in [p], S \subseteq V_i$.

Robust Vertex Contraction Decomposition – UDGs

UDG Vertex Contraction Decomposition: \Box -preserving partition V_1, \ldots, V_p s.t. tw $(G/E_{V_i \setminus S} \cup E_{\Box}) = O(p + |S|), \forall i \in [p], S \subseteq V_i$.

Theorem (Bandyapadhyay, Lochet, Lokshtanov, Saurabh, Xue '24) Unit disk graphs admit a UDG Vertex Contraction Decomposition.

Local radius of disk graphs – EPTASes

Local radius of D = radius of dual graph of arrangement $\cap D$ Local radius of G = min_{\mathcal{R} of G} max_{$D \in \mathcal{R}$} local radius of D

Local radius of disk graphs – EPTASes

Theorem (Lokshtanov, Panolan, Saurabh, Xue, Zehavi '23)

- ▶ low local radius → linearly bounded local treewidth (Baker)
- EPTAS-preserving reduction to low local radius

Bounded weak-diameter colorings

Weak-diameter-d k-coloring of G: (improper) k-coloring of G such that every pair of vertices in a same monochromatic component is at distance at most d in G.

Bounded weak-diameter colorings

Weak-diameter-d k-coloring of G: (improper) k-coloring of G such that every pair of vertices in a same monochromatic component is at distance at most d in G.

Weak-diameter-2 3-coloring

Bounded weak-diameter colorings

Weak-diameter-d k-edge-coloring of G: (improper) k-edge-coloring of G such that every pair of vertices in a same monochromatic component is at distance at most d in G.

Weak-diameter-2 3-edge-coloring

Applications of bounded weak-diameter colorings

Closely related to padded and low-diameter decompositions

Various applications in approximation algorithms, <u>distributed</u> algorithms, spanners, routing, induced minor theory, etc.

Weak-diameter-*d k*-coloring \rightarrow (Δ + 1)-coloring in *O*(*dk*) rounds

Applications of bounded weak-diameter colorings

Closely related to padded and low-diameter decompositions

Various applications in approximation algorithms, <u>distributed</u> algorithms, spanners, routing, induced minor theory, etc.

In O(d) rounds, a delegate per component of the first color collects their induced subgraph and broadcasts the $(\Delta + 1)$ -coloring

Applications of bounded weak-diameter colorings

Closely related to padded and low-diameter decompositions

Various applications in approximation algorithms, <u>distributed</u> algorithms, spanners, routing, induced minor theory, etc.

Then we move to the second color, etc.

Theorem (Klein, Plotkin, Rao '93)

Every K_h -minor-free graph admits a weak-diameter-f(h)2^{O(h)}(-edge)-coloring with $f(h) = O(h^2)$.

Theorem (Klein, Plotkin, Rao '93)

Every K_h -minor-free graph admits a weak-diameter-f(h)2^{O(h)}(-edge)-coloring with $f(h) = O(h^2)$.

While the *processed* component has weak diameter > f(h), start a BFS at an arbitrary vertex

Theorem (Klein, Plotkin, Rao '93)

Every K_h -minor-free graph admits a weak-diameter-f(h)2^{O(h)}(-edge)-coloring with $f(h) = O(h^2)$.

and recurse on every connected component of every subgraph induced by O(1) consecutive layers.

Theorem (Klein, Plotkin, Rao '93)

Every K_h -minor-free graph admits a weak-diameter-f(h)2^{O(h)}(-edge)-coloring with $f(h) = O(h^2)$.

Claim: The branching tree has depth at most h + 1.

Say there is a branch $G_1, G_2, \ldots, G_{h+2}$ in the branching tree

 $A_1(h+1),\ldots,A_h(h+1)\subset V(\mathcal{G}_{h+1})$ far apart in \mathcal{G} is a $\mathcal{K}_{h,0}$ minor

Rewinding back to G_1 builds a $K_{h,h}$ minor

Rewinding back to G_1 builds a $K_{h,h}$ (induced!) minor

Can we build an induced minor model of the 1-subdivision of $K_{h,h}$?

Weak-diameter colorings beyond minor-free classes

Question

Are there f, g such that every $K_h^{(1)}$ -induced-minor-free graph has a weak-diameter-f(h) g(h)(-edge)-coloring?

Weak-diameter colorings beyond minor-free classes

Question

Are there f, g such that every $K_h^{(1)}$ -induced-minor-free graph has a weak-diameter-f(h) g(h)(-edge)-coloring?

Theorem (Davies '25+)

Every region intersection graph G over some K_h -minor free H has a weak-diameter- $O(h^2) 2^{O(h)}(-edge)$ -coloring.

Twist the metric in ${\it G}$ based on its representation in ${\it H}$

Weak-diameter colorings beyond minor-free classes

Question

Are there f, g such that every $K_h^{(1)}$ -induced-minor-free graph has a weak-diameter-f(h) g(h)(-edge)-coloring?

Theorem (Davies '25+)

Every region intersection graph G over some K_h -minor free H has a weak-diameter- $O(h^2) 2^{O(h)}(-edge)$ -coloring.

Twist the metric in ${\it G}$ based on its representation in ${\it H}$

Can it be made robust?

Could it be that every class excluding an induced minor is contained in $RIG({K_h-minor-free})$ for some fixed *h*?

Extending the Pohoata-Davies grid

Theorem (B., Hickingbotham '25+) For every h, there is a $K_6^{(1)}$ -induced-minor-free graph that is not

a region intersection graph over K_h-minor free graphs.

Excludes three cycles with paths bridging any two cycles and avoiding the neighborhood of the third

Extending the Pohoata-Davies grid

Theorem (B., Hickingbotham '25+)

For every h, there is a $K_6^{(1)}$ -induced-minor-free graph that is not a region intersection graph over K_h -minor free graphs.

Still excludes an induced minor, but is no longer in $RIG({K_h-minor-free})$ for any h

Theorem (Matoušek '13)

Every m-edge string graph has treewidth $O(\sqrt{m} \log m)$.

Theorem (Matoušek '13)

Every m-edge string graph has treewidth $O(\sqrt{m} \log m)$.

Theorem (Lee '17 & Davies '25+) Every m-edge string graph has treewidth $O(\sqrt{m})$.

Theorem (Matoušek '13)

Every m-edge string graph has treewidth $O(\sqrt{m} \log m)$.

Theorem (Lee '17 & Davies '25+) Every m-edge string graph has treewidth $O(\sqrt{m})$.

Fox and Pach first observed that this yields a subexponential algorithm for $\rm MAX$ $\rm INDEPENDENT$ $\rm SET$

- 1. While there is a vertex of degree at least $n^{1/3}$, branch on adding it to the solution or removing it from the graph.
- 2. At the leaves, graphs have treewidth $O(\sqrt{n^{1/3} \cdot n}) = O(n^{2/3})$.

Theorem (Matoušek '13)

Every m-edge string graph has treewidth $O(\sqrt{m} \log m)$.

Theorem (Lee '17 & Davies '25+) Every m-edge string graph has treewidth $O(\sqrt{m})$.

Fox and Pach first observed that this yields a subexponential algorithm for $\rm MAX$ $\rm INDEPENDENT$ $\rm SET$

- 1. While there is a vertex of degree at least $n^{1/3}$, branch on adding it to the solution or removing it from the graph.
- 2. At the leaves, graphs have treewidth $O(\sqrt{n^{1/3} \cdot n}) = O(n^{2/3})$.

1. takes time $2^{\widetilde{O}(n^{2/3})}$, and each leaf of 2. takes time $2^{O(n^{2/3})}$

Tight ETH bounds in string graphs

Theorem (Fox, Pach '11; B., Rzążewski '19) MAX INDEPENDENT SET, FEEDBACK VERTEX SET, 3-COLORING can be solved in time $2^{O(n^{2/3})}$, and requires $2^{\Omega(n^{1/2})}$ under the ETH.

Theorem (Marx, Pilipczuk '15)

MAX INDEPENDENT SET in n-vertex string graphs given with a representation of size s can be solved in time $2^{\widetilde{O}(n^{1/2})}s^{O(1)}$.

What is the correct exponent?

Approximating MAX INDEPENDENT SET in string graphs

Theorem (Adamaszek, Har-Peled, Wiese '19)

MAX INDEPENDENT SET in string graphs given with a polynomial-size representation admits a QPTAS.

Theorem (Fox, Pach '11)

MAX INDEPENDENT SET in O(1)-string graphs admits a n^{ε} -approximation in time $n^{f(\varepsilon)}$.

Approximating MAX INDEPENDENT SET in string graphs

Theorem (Adamaszek, Har-Peled, Wiese '19)

MAX INDEPENDENT SET in string graphs given with a polynomial-size representation admits a QPTAS.

Theorem (Fox, Pach '11)

MAX INDEPENDENT SET in O(1)-string graphs admits a n^{ε} -approximation in time $n^{f(\varepsilon)}$.

We currently cannot rule out:

Conjecture (most optimistic)

For every H, MAX INDEPENDENT SET in H-induced-minor-free graphs admits a PTAS.

Balanced separators of induced-minor-free graphs

Theorem (Korhonen, Lokshtanov '24)

Every m-edge H-induced-minor-free graph has treewidth $\tilde{O}_H(\sqrt{m})$.

 \approx same algorithmic applications

Question Can it be improved to $O_H(\sqrt{m})$?
Things I did not mention

- the use of Voronoi diagrams of graphs
- ▶ the use of (distance) VC dimension for DIAMETER
- new parameters and how they relate to intersection graphs

Things I did not mention

- the use of Voronoi diagrams of graphs
- ▶ the use of (distance) VC dimension for DIAMETER
- new parameters and how they relate to intersection graphs

Thank you for your attention!