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Preserve (approxierly) properties of the original space:

Distances

Cuts, Flows

Commute time

E�ective resistance

Clustering statistics.

etc.
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f has distortion t if:

∀x , y ∈ X , dX (x , y) ≤ dY (f (x), f (y)) ≤ t · dX (x , y) .

It is highly desirable that the target space Y will have simple structure.
So that we could run e�cient algorithms on it...
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Theorem ([Bourgain 85])

Every n-point metric (X , dX ) is embeddable into Euclidean space (Rd , ∥ · ∥2)
with distortion O(log n).

Theorem ([Linial, London, Rabinovich 95])

[Bou85] is tight.



Theorem ([Bourgain 85])

Every n-point metric (X , dX ) is embeddable into Euclidean space (Rd , ∥ · ∥2)
with distortion O(log n).
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Applications:

Approximation algorithms (e.g. sparsest cut, min graph bandwidth)

Parallel computation (e.g. SSSP in MPC)

Computational Biology (e.g. clustering and detecting protein seq.)

etc.
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Planar metric- the shortest path metric of a planar graph.

Theorem ([Newman, Rabinovich 03])

[Rao99] is tight.
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Theorem ([Rao 99])

Every n-point planar metric (X , dX ) (or �xed minor free) is embeddable

into Euclidean space (Rd , ∥ · ∥2) with distortion O(
√
log n).

f :

x

y

z

We can get the same result for ℓ1, but could we do better?

GNRS conjecture [Gupta, Newman, Rabinovich, Sinclair 04]

Every �xed minor free graph can be embedded into ℓ1 with constant distortion.
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f :

Theorem ([Johnson, Lindenstrauss 84], Dimension Reduction)

X ⊂ (Rd , ∥ · ∥2) set of size n. Then X embeds into O(log n/ϵ2) dimensional Euclidean
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[JL84] is tight.



Theorem ([Johnson, Lindenstrauss 84], Dimension Reduction)

X ⊂ (Rd , ∥ · ∥2) set of size n. Then X embeds into O(log n/ϵ2) dimensional Euclidean
space with distortion 1+ ϵ.

f :

Applications:

Speeding up-computation

Clustering

Nearest Neighbor Search

Machine Learning

etc.
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Embedding into Trees
Tree is very simple and desirable target space.

Many NP-hard problems are easy on trees (using dynamic programming).
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=
1

n
· (n − 1) +

n − 1

n
· 1 =

2(n − 1)

n
< 2 .



Embedding into Trees
Tree is very simple and desirable target space. v1

vj

vivi+1

v0vn−1

vj+1Embedding Cn requires distortion Ω(n).

What if we delete a random edge ẽ?
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Embedding into Trees
v1

vj

vivi+1

v0vn−1

vj+1Embedding Cn requires distortion Ω(n).

What if we delete a random edge ẽ?

ET∼D[dT (vi , vi+1)] = Pr [ẽ = {vi , vi+1}] · (n − 1) + Pr [ẽ ̸= {vi , vi+1}] · 1

=
1

n
· (n − 1) +

n − 1

n
· 1 =

2(n − 1)

n
< 2 .

By triangle inequality and linearity of expectation

∀vi , vj , ET∼D[dT (vi , vj)] =

j−1∑
q=i

ET∼D[dT (vq, vq+1(mod n))] ≤ 2 · dCn(vi , vj) .
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Stochastic Embedding into Trees

Theorem ([Fakcharoenphol, Rao, Talwar 04], improving [Bartal 96+98])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log n).

[Alon, Karp, Peleg, West 95]: Tight!

In fact, tight already for the n × n grid graph!
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Stochastic Embedding into Trees

Theorem ([Fakcharoenphol, Rao, Talwar 04], improving [Bartal 96+98])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log n).

A useful hammer Transforms arbitrary metric into a tree!

Applications:

Approximation Algorithms.

Online Algorithms.

Distributed Computing.

etc.
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We will begin our tour of metric embeddings into trees with the classics: [Bartal 96]

This one is based on random partitions of metric spaces.
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De�nition (Padded Decomposition)

Given a metric space (X , dX ) (or a weight graph G = (V ,E ,w)).
Distribution D over partitions of G is (β,∆)-padded decomposition if:

For every cluster C ∈ P ∼ D, diam(C) ≤ ∆.

∀ small 0 ≤ γ, and z ∈ V , Pr[B(z , γ∆) ⊆ P(z)] ≥ e−βγ ≈ 1− βγ

Theorem ([Bartal 96])

Every n-point metric space admits an O(log n)-padded decomposition scheme.

This is also tight! [Bartal 96]
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Every n-point metric space (X , dX ) admits an O(log n)-padded decomposition scheme.

Algorithm:
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Thus all the sampled radii ≤ ∆
2
.

⇒ all clusters have diameter ≤ ∆.
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i is the �rst s.t. Ci ∩ B(z , γ∆) ̸= ∅
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By Memorylessness,

Pr [B(z , γ∆) ⊆ Ci | B(z , γ∆) ∩ Ci ̸= ∅] ≥ Pr [r̃i ≥ 2γ∆] = e−γ·2c log n
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Theorem ([Fakcharoenphol, Rao, Talwar 04] , [Bartal 04])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log n).

The improvement is achieved by sampling the padded decomposition in various levels in
a correlated fashion.

Speci�cally, the probability to cut x , y at scale ∆ is

≈ dX (x , y)

∆
· log |B(x , c · 2

i)|
|B(x , 2i/c)|

for some constant c , instead of ≈ dX (x ,y)
∆
· log n. Then the sum �telescopes�.
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For every point xi we have to assign a vector v⃗i ∈ Rd .

That is we embed f (xi) = v⃗i . Once v⃗i is �xed, impossible to change!

Goal: Find a way to embed with small distortion.

Observation: [Bartal 96] padded decomposition can work in an online fashion! (as the
order is arbitrary)!

Theorem ([Indyk, Magen, Sidiropoulos, Zouzias 10])

Given an n-point metric space in an online fashion with aspect ratio Φ, there is a
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Input: sequence of metric points arriving in an online fashion: x1, x2, . . . , xi , . . . .

When receiving xi , we can also see dX (x1, xi), dX (x2, xi), . . . , dX (xi−1, xi).

For every point xi we have to assign a vector v⃗i ∈ Rd .

That is we embed f (xi) = v⃗i . Once v⃗i is �xed, impossible to change!

Goal: Find a way to embed with small distortion.

Observation: [Bartal 96] padded decomposition can work in an online fashion! (as the
order is arbitrary)!

Theorem ([Indyk, Magen, Sidiropoulos, Zouzias 10])

Given an n-point metric space in an online fashion with aspect ratio Φ, there is a
stochastic online metric embedding into trees with expected distortion

O(log Φ · log n).

There is an Ω(log Φ · log n) lower bound [Bartal, Fandina, Umboh 20].
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∀i , j , ∥u⃗i − u⃗j∥2 = ∥fi − fj∥2 .

This can also be done in an online fashion. Thus we obtain a deterministic embedding!
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Theorem ([Bhore, F., Tóth 24])

Given an n-point metric space in an online fashion with aspect ratio Φ, there is an
online deterministic metric embedding into ℓ2 with distortion O(

√
log Φ · log n).

Question

Fix d . Find a deterministic online embedding into Rd with small distortion.

[BFT24]: Õ(
√
n) upper bound with linear dimension.

[Newman Rabinovich 20]: Online embedding into the line R:
▶ Upper bound: O(n · 6n)
▶ Lower bound: 2

n
2

The question is wide open for d = 2.

Could we get deterministic distortion poly(n) for constant d?



Online Padded Decomposition

De�nition (Padded Decomposition)

Given a metric space (X , dX ) (or a weight graph G = (V ,E ,w)).
Distribution D over partitions of G is (β,∆)-padded decomposition if:

Every cluster C ∈ P ∼ D is ∆-bounded.

For every small 0 ≤ γ, and z ∈ V , Pr[B(z , γ∆) ⊆ P(z)] ≥ e−βγ .

[Bartal 96]: ∀ n-point metric space admits an O(log n)-padded decomposition scheme.
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[Bartal 96]: ∀ n-point metric space admits an O(log n)-padded decomposition scheme.

[Bartal 96] can be executed in an online fashion.

[Klein, Plotkin, Rao 93]: The shortest path metric of every planar graph admits an
O(1)-padded decomposition scheme.

Question
Input: metric points in an online fashion from the shortest path metric of a planar
graph. Goal: Sample from an O(1)-padded decomposition scheme.

Crucially: The planar graph is unknown!
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[Klein, Plotkin, Rao 93]: The shortest path metric of every planar graph admits an
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Outline of the talk

1 Introduction

2 Stochastic embedding into trees
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4 Online Metric Embeddings

5 Spanning trees and MPX
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Theorem ([FRT04],[Bar04] Stochastic embedding into trees)

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log n).

Suppose that we are given a graph G = (V ,E ,w), could we sample a spanning tree

of G with expected distortion O(log n)?
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Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log n).

Suppose that we are given a graph G = (V ,E ,w), could we sample a spanning tree

of G with expected distortion O(log n)?

The construction we saw [Bar96], as well as others are not into subgraphs.

Theorem ([Abraham, Neiman 12] (improving over [AKPW95], [EEST05],
[ABN08]))

Every n-vertex graph G = (V ,E ,w) embeds into distribution D over it's spanning
trees with expected distortion Õ(log n).
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Question
Construct embedding into spanning trees with expected distortion O(log n).



Spanning Trees

Theorem ([FRT04],[Bar04] Stochastic embedding into trees)

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log n).

Theorem ([AN12] (improving over [AKPW95], [EEST05], [ABN08]))

Every n-vertex graph G = (V ,E ,w) embeds into distribution D over it's spanning
trees with expected distortion Õ(log n).

Question
Construct embedding into spanning trees with expected distortion O(log n).

We will see a recent, simple and elegant construction: [Becker, Emek, Gha�ari, Lenzen
24]. The expected distortion is O(log3 n), and it is based on [MPX13].
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Formally, for v ∈ V set fv (t) = δt − dG (v , t).

v joins the cluster Ct of the center t maximizing fv .

δt sampled i.i.d. using exponential distribution with parameter Θ( ∆
log n

).



Unfair race, different starting points: δt − dX(v, t)
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runners are memoryless

δt ∼ Exp(Θ( ∆
log n))
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[Miller, Peng, Xu 2013] - clustering with exponential clocks
Formally, for v ∈ V set fv (t) = δt − dG (v , t).

δt1 = 4
δt2 = 2

δt3 = 1
δt4 = 4

t1 t2

t3 t4

δt sampled i.i.d. using exponential distribution with parameter Θ( ∆
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[BEGL24] Stochastic Embedding into Spanning Trees
Spanning Tree Algorithm (G ,X , x0,R)

Assumption: X ⊆ B(x0,R)

1 Sample r0 ∈ [1
2
, 2
3
] · R u.a.r.

2 X0 = B(x0, r0).

3 Cut edges: {(y1, x1), . . . , (yk , xk)}
4 Run [MPX13] on G [X \ X0]

Centers: x1, . . . , xk .
xi shift: δi − dG (x0, xi).
δi ∼ Exp(Θ( ϵ

log n
· R)).

5 Recurse: Ti = STA(G ,Xi , xi ,Ri)

6 T ← cut edges
⋃
{Ti}ki=0

.
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Planar graphs into treewidth graphs

Theorem ([FRT04], improving [Bartal 96+98])

Every n-point metric space (X , d) embeds into distribution D over trees with expected
distortion O(log n).

Tight!

Planar graphs into trees, could we do better?
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Planar graphs into trees, could we do better? No!
[AKPW95]: [FRT04] is tight already for the n × n grid graph!
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Planar graphs into treewidth graphs

Theorem ([FRT04], improving [Bartal 96+98])

Every n-point metric space (X , d) embeds into distribution D over trees with expected
distortion O(log n).

Tight!

Planar graphs into trees, could we do better? No!
Perhaps try a richer target space?
Planar graphs into low treewidth graphs, could we do better? No!

Theorem ([Chakrabarti, Ja�e, Lee, Vincent 08] Stochastic Lower Bound)

∀t, ∃ n-vertex planar graph G = (V ,E ,w) such that every stochastic embedding

into treewidth-t graphs incur distortion Ω(log n).



Planar graphs into treewidth graphs

Theorem ([CJLV08] Stochastic Lower Bound)

∀t, ∃ n-vertex planar graph G = (V ,E ,w) such that every stochastic embedding

into treewidth-t graphs incur distortion Ω(log n).

Theorem ([Fox-Epstein, Klein, Schild 19], improving [Eisenstat, Klein,
Mathieu 14] Planar into treewidth)

Consider planar graph G with diameter D and parameter ϵ ∈ (0, 1), then G embeds
into treewidth poly(1

ϵ
) graph with additive distortion ϵD.

Deterministically!
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additive distortion ϵD into treewidth O(ϵ−1(log log n)2) graph.



Planar graphs into treewidth graphs

Theorem ([FKS19] Planar into treewidth)

Consider planar graph G with diameter D and parameter ϵ ∈ (0, 1), then G embeds
into treewidth poly(1

ϵ
) graph with additive distortion ϵD. Deterministically!

D = maxu,v dG (u, v)

f : G → H , tw(H) = poly(1
ϵ
) s.t. ∀u, v ,

dG (u, v) ≤ dH(f (u), f (v)) ≤ dG (u, v) + ϵD .

[F., Le 22]: Deterministic embedding with
additive distortion ϵD into treewidth O(ϵ−1(log log n)2) graph.

Applications to: PTAS for Vehicle routing,
EPTAS for metric ρ-dominating set, and metric ρ-isolated set.



Minor-free graphs into treewidth graphs

Theorem ([FKS19] Planar into treewidth)

Consider planar graph G with diameter D and parameter ϵ ∈ (0, 1), then G embeds
into treewidth poly(1

ϵ
) graph with additive distortion ϵD.

What about minor-free graphs?
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Theorem ([FKS19] Planar into treewidth)

Consider planar graph G with diameter D and parameter ϵ ∈ (0, 1), then G embeds
into treewidth poly(1

ϵ
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What about minor-free graphs? No!

Theorem ([Cohen-Addad, F., Klein, Le 20] Minor lower bound)

∃ n-vertex K6-free graph G = (V ,E ,w) s.t. every classic embedding
into o(

√
n)-treewidth graph incur additive distortion D
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.



Minor-free graphs into treewidth graphs

Theorem ([FKS19] Planar into treewidth)

Consider planar graph G with diameter D and parameter ϵ ∈ (0, 1), then G embeds
into treewidth poly(1

ϵ
) graph with additive distortion ϵD.

What about minor-free graphs? No!

Theorem ([CFKL20] Minor lower bound)

∃ n-vertex K6-free graph G = (V ,E ,w) s.t. every classic embedding
into o(

√
n)-treewidth graph incur additive distortion D

20
.

Maybe Stochastic?



Minor-free graphs into treewidth graphs

Theorem ([CFKL20] Minor lower bound)

∃ n-vertex K6-free graph G = (V ,E ,w) s.t. every classic embedding
into o(

√
n)-treewidth graph incur additive distortion D

20
.

Theorem ([F., Le 22] Minor stochastic embedding (improving over
[CFKL20]))

For ϵ ∈ (0, 1), every n-point Kr -free graph with diameter D,

stochastically embeds into distribution D over Or (
(log log n)2

ϵ2
)-treewidth graphs

with expected additive distortion ϵD.
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E(f ,H)∼D[dH(f (u), f (v))] ≤ dG (u, v) + ϵD .
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Minor-free graphs into treewidth graphs

Theorem ([FL22] Minor stochastic embedding (improving over [CFKL20]))

For ϵ ∈ (0, 1), every n-point Kr -free graph with diameter D,

stochastically embeds into distribution D over Or (
(log log n)2

ϵ2
)-treewidth graphs

with expected additive distortion ϵD.

∀u, v , and (f ,H) ∈ supp(D), dG (u, v) ≤ dH(f (u), f (v)), and

E(f ,H)∼D[dH(f (u), f (v))] ≤ dG (u, v) + ϵD .

Applications to: PTAS for Vehicle routing.

A version of this embedding (called Ramsey type and clan) been used to obtain QPTAS
for the ρ-dominating/isolated set problems.
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Remove dependency on n.

Improve the ginormous dependence on r (structure theorem).



Minor-free graphs into treewidth graphs

Theorem ([FL22] Minor stochastic embedding (improving over [CFKL20]))

For ϵ ∈ (0, 1), every n-point Kr -free graph with diameter D,

stochastically embeds into distribution D over Or (
(log log n)2

ϵ2
)-treewidth graphs

with expected additive distortion ϵD.

Questions:

Remove dependency on n.

Improve the ginormous dependence on r (structure theorem).

For planar graphs we have treewidth min{poly(ϵ−1),O(ϵ−1(log log n)2)}.
Can we get O(ϵ−1)?
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Theorem ([CJLV08] Stochastic Lower Bound)

∀t, ∃ n-vertex planar graph G = (V ,E ,w) such that every stochastic embedding

into treewidth-t graphs incur distortion Ω(log n).
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Embedding into treewidth graphs with multiplicative distortion

Theorem ([CJLV08] Stochastic Lower Bound)

∀t, ∃ n-vertex planar graph G = (V ,E ,w) such that every stochastic embedding

into treewidth-t graphs incur distortion Ω(log n).

What if we allow t to depend on G?

Theorem ([Carroll, Goel 04] Stochastic Lower Bound 2)

Every stochastic embedding of planar graphs into treewidth-t graphs with constant

expected distortion requires t = Ω(log n).
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Embedding into treewidth graphs with multiplicative distortion

Theorem ([CJLV08]: constant treewidth ⇒ Ω(log n) expected distortion)

∀t, ∃ n-vertex planar graph G = (V ,E ,w) such that every stochastic embedding

into treewidth-t graphs incur distortion Ω(log n).

What if we allow t to depend on G?

Theorem ([CG04]: constant expected distortion ⇒ Ω(log n) treewidth)

Every stochastic embedding of planar graphs into treewidth-t graphs with constant

expected distortion requires t = Ω(log n).

Theorem ([Cohen-Addad, Le, Pilipczuk, Pilipczuk 23])

∀ϵ ∈ (0, 1), every n-point Kr -minor free graph embeds into distribution over graphs
with treewidth Õr (ϵ

−1) · polylog(n) with expected distortion 1+ ϵ.
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Theorem ([CLPP23])
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−1) · polylog(n) with expected distortion 1+ ϵ.

Applications to: QPTAS for capacitated Vehicle routing

(unit demand, general capacities).
QPTAS for facility location.
QPTAS for capacitated k-Median.
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Theorem ([CLPP23])

∀ϵ ∈ (0, 1), every n-point Kr -minor free graph embeds into distribution over graphs
with treewidth Õr (ϵ

−1) · polylog(n) with expected distortion 1+ ϵ.

Applications to: QPTAS for capacitated Vehicle routing

(unit demand, general capacities).
QPTAS for facility location.
QPTAS for capacitated k-Median.

Theorem ([Chang, Cohen-Addad, Conroy, Le, Pilipczuk, Pilipczuk 25])

∀ϵ ∈ (0, 1), every n-point planar graph embeds into distribution over graphs with
treewidth O(ϵ−1 · log3 n) with expected distortion 1+ ϵ.



Embedding into treewidth graphs with multiplicative distortion

Theorem ([CLPP23])

∀ϵ ∈ (0, 1), every n-point Kr -minor free graph embeds into distribution over graphs
with treewidth Õr (ϵ

−1) · polylog(n) with expected distortion 1+ ϵ.

Theorem ([CCCLPP25])

∀ϵ ∈ (0, 1), every n-point planar graph embeds into distribution over graphs with
treewidth O(ϵ−1 · log3 n) with expected distortion 1+ ϵ.

Conjecture [CCCLPP25]

1+ ϵ expected distortion from planar graphs into treewidth O(ϵ−1 · log n) graphs.



Additional spin-o�s we didn't cover:

Räcke trees: embedding into trees with O(log n) expected congestion.

Ramsey trees: every metric contains a subset of n1−
1

k points that can be
embedded into a tree with distortion O(k) (worst case).

Clan: embedding into a single tree with (worst case) distortion O(k) such that

every vertex has n
1

k copies in expectation.

Scaling distortion: embedding such that ∀ϵ, at most ϵ ·
(
n
2

)
pairs have expected

distortion Ω(log 1

ϵ
).

Priority distortion: given ordering x1, x2, . . . , xn, embedding such that
∀i < j , E[dT (xi , xj)] = O(log i) · dX (xi , xj).
Dynamic: maintaining stochastic embedding into tree of a changing graph.

Distributed: sampling stochastic embedding in the CONGEST / LOCAL models.

Hop-constrained: embedding preserving the hop-distance d
(h)
G (u, v).

Digraphs into DAGS.

More?
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