Outline of the talk

Introduction

- 2 Stochastic embedding into trees
- 3 Bartal 96 and Padded decompositions
- Online Metric Embeddings
- **(5)** Spanning trees and MPX
- 6 Minor Free Graphs

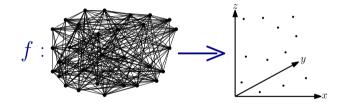
Metric Embeddings into Trees and its Various Spin-offs

> Arnold Filtser Bar-Ilan University

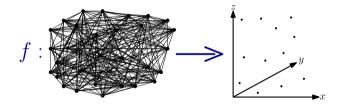
Dagstuhl Seminar 25212: Metric Sketching and Dynamic Algorithms for Geometric and Topological Graphs

May 19, 2025

Embedding $(X, d_X), (Y, d_Y)$ metric spaces. $f: (X, d_X) \rightarrow (Y, d_Y)$ is called an **embedding**.



Embedding $(X, d_X), (Y, d_Y)$ metric spaces. $f : (X, d_X) \to (Y, d_Y)$ is called an embedding.

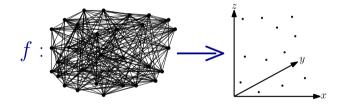


Preserve (approxierly) properties of the original space:

- Distances
- Cuts, Flows
- Commute time

- Effective resistance
- Clustering statistics.
- etc.

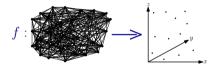
Embedding $(X, d_X), (Y, d_Y)$ metric spaces. $f: (X, d_X) \to (Y, d_Y)$ is called an **embedding**.



f has **distortion** t if:

 $\forall x, y \in X, \qquad d_X(x, y) \leq d_Y(f(x), f(y)) \leq t \cdot d_X(x, y) .$

Embedding $(X, d_X), (Y, d_Y)$ metric spaces. $f: (X, d_X) \to (Y, d_Y)$ is called an embedding.

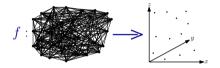


f has **distortion** t if:

$$orall x, y \in X, d_X(x, y) \leq d_Y(f(x), f(y)) \leq t \cdot d_X(x, y)$$
.

It is highly desirable that the target space Y will have simple structure.

Embedding $(X, d_X), (Y, d_Y)$ metric spaces. $f: (X, d_X) \to (Y, d_Y)$ is called an **embedding**.

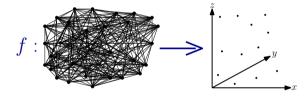


f has distortion t if:

$$orall x, y \in X, d_X(x, y) \leq d_Y(f(x), f(y)) \leq t \cdot d_X(x, y)$$
.

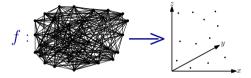
It is highly desirable that the target space Y will have **simple structure**. So that we could run efficient algorithms on it...

Embedding $(X, d_X), (Y, d_Y)$ metric spaces. $f: (X, d_X) \to (Y, d_Y)$ is called an **embedding**.



Theorem ([Bourgain 85])

Every n-point metric (X, d_X) is embeddable into Euclidean space $(\mathbb{R}^d, \|\cdot\|_2)$ with distortion $O(\log n)$. Embedding $(X, d_X), (Y, d_Y)$ metric spaces. $f: (X, d_X) \to (Y, d_Y)$ is called an embedding.



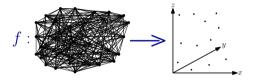
Theorem ([Bourgain 85])

Every n-point metric (X, d_X) is embeddable into Euclidean space $(\mathbb{R}^d, \|\cdot\|_2)$ with distortion $O(\log n)$.

Theorem ([Linial, London, Rabinovich 95]) [Bou85] is tight.

Theorem ([Bourgain 85])

Every n-point metric (X, d_X) is embeddable into Euclidean space $(\mathbb{R}^d, \|\cdot\|_2)$ with distortion $O(\log n)$.

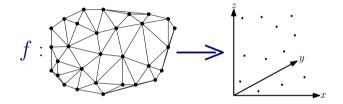


Applications:

- Approximation algorithms (e.g. sparsest cut, min graph bandwidth)
- Parallel computation (e.g. SSSP in MPC)
- Computational Biology (e.g. clustering and detecting protein seq.)

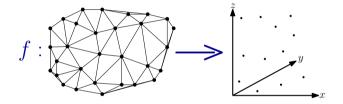
• etc.

Every n-point planar metric (X, d_X) (or fixed minor free) is embeddable into <u>Euclidean</u> space $(\mathbb{R}^d, \|\cdot\|_2)$ with distortion $O(\sqrt{\log n})$.



Planar metric- the shortest path metric of a planar graph.

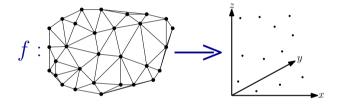
Every n-point planar metric (X, d_X) (or fixed minor free) is embeddable into <u>Euclidean</u> space $(\mathbb{R}^d, \|\cdot\|_2)$ with distortion $O(\sqrt{\log n})$.



Planar metric- the shortest path metric of a planar graph.

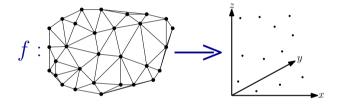
Theorem ([Newman, Rabinovich 03]) [Rao99] is tight.

Every n-point planar metric (X, d_X) (or fixed minor free) is embeddable into <u>Euclidean</u> space $(\mathbb{R}^d, \|\cdot\|_2)$ with distortion $O(\sqrt{\log n})$.



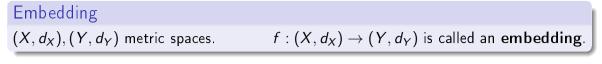
We can get the same result for ℓ_1 , but could we do better?

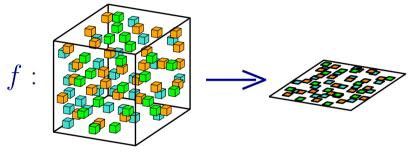
Every n-point planar metric (X, d_X) (or fixed minor free) is embeddable into <u>Euclidean</u> space $(\mathbb{R}^d, \|\cdot\|_2)$ with distortion $O(\sqrt{\log n})$.



We can get the same result for ℓ_1 , but could we do better?

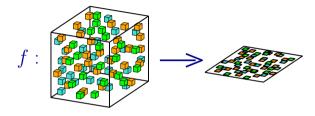
GNRS conjecture [Gupta, Newman, Rabinovich, Sinclair 04] Every fixed minor free graph can be embedded into ℓ_1 with constant distortion.





Theorem ([Johnson, Lindenstrauss 84], Dimension Reduction) $X \subset (\mathbb{R}^d, \|\cdot\|_2)$ set of size n. Then X embeds into $O(\log n/\epsilon^2)$ dimensional Euclidean space with distortion $1 + \epsilon$.

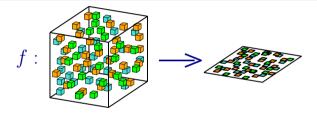
Embedding $(X, d_X), (Y, d_Y)$ metric spaces. $f: (X, d_X) \to (Y, d_Y)$ is called an **embedding**.



Theorem ([Johnson, Lindenstrauss 84], Dimension Reduction) $X \subset (\mathbb{R}^d, \|\cdot\|_2)$ set of size n. Then X embeds into $O(\log n/\epsilon^2)$ dimensional Euclidean space with distortion $1 + \epsilon$.

Theorem ([Green Larsen, Nelson 17]) [JL84] is tight.

Theorem ([Johnson, Lindenstrauss 84], Dimension Reduction) $X \subset (\mathbb{R}^d, \|\cdot\|_2)$ set of size n. Then X embeds into $O(\log n/\epsilon^2)$ dimensional Euclidean space with distortion $1 + \epsilon$.



Applications:

- Speeding up-computation
- Clustering
- Nearest Neighbor Search
- Machine Learning
- etc.

Outline of the talk

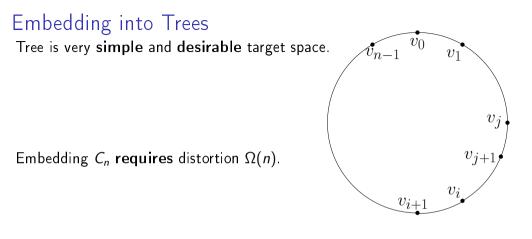
Introduction

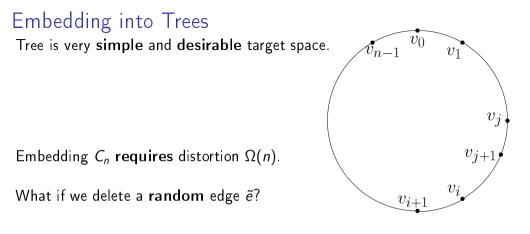
- 2 Stochastic embedding into trees
 - 3 Bartal 96 and Padded decompositions
- Online Metric Embeddings
- **(5)** Spanning trees and MPX
- 6 Minor Free Graphs

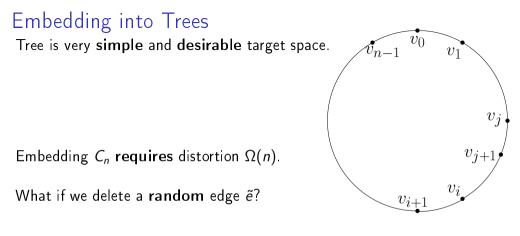
Embedding into Trees

Tree is very **simple** and **desirable** target space.

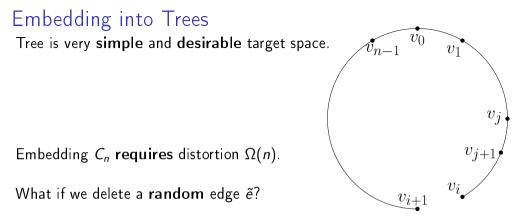
Many NP-hard problems are easy on trees (using dynamic programming).



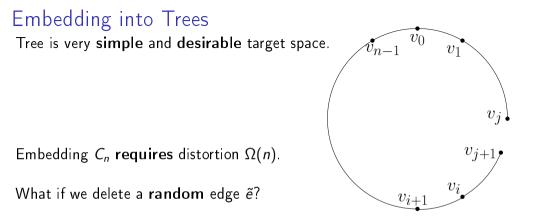




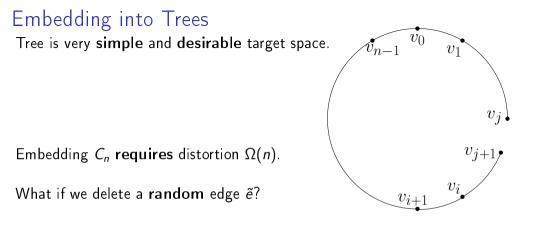
 $\mathbb{E}_{T \sim \mathcal{D}}[d_T(v_i, v_{i+1})]$



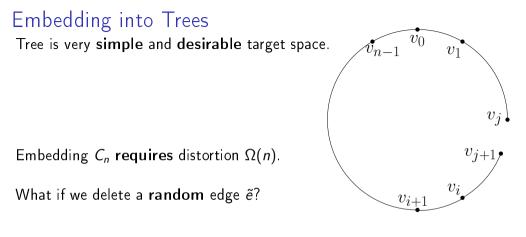
$$\mathbb{E}_{\mathcal{T}\sim\mathcal{D}}[d_{\mathcal{T}}(\textit{v}_i,\textit{v}_{i+1})] = \mathsf{Pr}\left[\tilde{e} = \{\textit{v}_i,\textit{v}_{i+1}\}\right] \cdot (n-1) + \mathsf{Pr}\left[\tilde{e} \neq \{\textit{v}_i,\textit{v}_{i+1}\}\right] \cdot 1$$



$$\mathbb{E}_{\mathcal{T}\sim\mathcal{D}}[d_{\mathcal{T}}(\textit{v}_i,\textit{v}_{i+1})] = \Pr\left[\tilde{e} = \{\textit{v}_i,\textit{v}_{i+1}\}\right] \cdot (n-1) + \Pr\left[\tilde{e} \neq \{\textit{v}_i,\textit{v}_{i+1}\}\right] \cdot 1$$



$$\mathbb{E}_{\mathcal{T}\sim\mathcal{D}}[d_{\mathcal{T}}(v_i, v_{i+1})] = \Pr\left[\tilde{e} = \{v_i, v_{i+1}\}\right] \cdot (n-1) + \Pr\left[\tilde{e} \neq \{v_i, v_{i+1}\}\right] \cdot 1$$
$$= \frac{1}{n} \cdot (n-1) + \frac{n-1}{n} \cdot 1$$



$$\mathbb{E}_{\mathcal{T}\sim\mathcal{D}}[d_{\mathcal{T}}(v_{i}, v_{i+1})] = \Pr\left[\tilde{e} = \{v_{i}, v_{i+1}\}\right] \cdot (n-1) + \Pr\left[\tilde{e} \neq \{v_{i}, v_{i+1}\}\right] \cdot 1$$
$$= \frac{1}{n} \cdot (n-1) + \frac{n-1}{n} \cdot 1 \quad = \quad \frac{2(n-1)}{n} \quad < 2 \quad .$$

Embedding into Trees

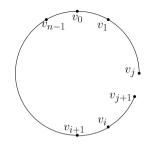
Embedding C_n requires distortion $\Omega(n)$.

What if we delete a random edge \tilde{e} ?

$$\mathbb{E}_{T \sim \mathcal{D}}[d_T(v_i, v_{i+1})] = \Pr\left[\tilde{e} = \{v_i, v_{i+1}\}\right] \cdot (n-1) + \Pr\left[\tilde{e} \neq \{v_i, v_{i+1}\}\right] \cdot 1$$
$$= \frac{1}{n} \cdot (n-1) + \frac{n-1}{n} \cdot 1 \quad = \quad \frac{2(n-1)}{n} \quad <2 \quad .$$

By triangle inequality and linearity of expectation

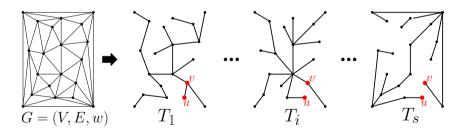
$$\forall \mathbf{v}_i, \mathbf{v}_j, \quad \mathbb{E}_{T \sim \mathcal{D}}[d_T(\mathbf{v}_i, \mathbf{v}_j)] = \sum_{q=i}^{j-1} \mathbb{E}_{T \sim \mathcal{D}}[d_T(\mathbf{v}_q, \mathbf{v}_{q+1 (\text{mod } n)})] \leq 2 \cdot d_{C_n}(\mathbf{v}_i, \mathbf{v}_j) \ .$$



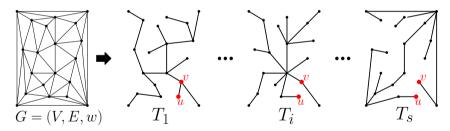
Theorem ([Fakcharoenphol, Rao, Talwar 04], improving [Bartal 96+98])

Every n-point metric space (X, d) embeds into distribution \mathcal{D} over dominating trees with expected distortion $O(\log n)$.

Theorem ([Fakcharoenphol, Rao, Talwar 04], improving [Bartal 96+98]) Every n-point metric space (X, d) embeds into distribution \mathcal{D} over dominating trees with expected distortion $O(\log n)$.

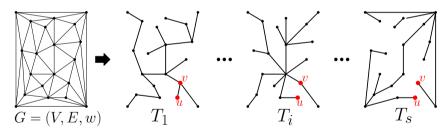


Theorem ([Fakcharoenphol, Rao, Talwar 04], improving [Bartal 96+98]) Every n-point metric space (X, d) embeds into distribution \mathcal{D} over dominating trees with expected distortion $O(\log n)$.



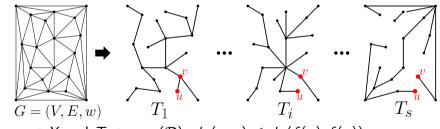
For every $u, v \in X$ and $T \in \operatorname{supp}(\mathcal{D})$, $d_X(u, v) \leq d_T(f(u), f(v))$.

Theorem ([Fakcharoenphol, Rao, Talwar 04], improving [Bartal 96+98]) Every n-point metric space (X, d) embeds into distribution \mathcal{D} over dominating trees with expected distortion $O(\log n)$.



For every $u, v \in X$ and $T \in \text{supp}(\mathcal{D})$, $d_X(u, v) \leq d_T(f(u), f(v))$. For every $u, v \in X$ $\mathbb{E}_{T \sim \mathcal{D}}[d_T(f(u), f(v))] \leq O(\log n) \cdot d_X(u, v)$.

Theorem ([Fakcharoenphol, Rao, Talwar 04], improving [Bartal 96+98]) Every n-point metric space (X, d) embeds into distribution \mathcal{D} over dominating trees with expected distortion $O(\log n)$.



For every $u, v \in X$ and $T \in \operatorname{supp}(\mathcal{D})$, $d_X(u, v) \leq d_T(f(u), f(v))$.

 $\text{For every } u, v \in X \qquad \mathbb{E}_{\mathcal{T} \sim \mathcal{D}}[d_{\mathcal{T}}(f(u), f(v))] \leq O(\log n) \cdot d_X(u, v).$

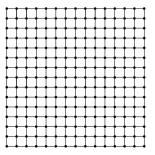
[Alon, Karp, Peleg, West 95]: Tight!

Theorem ([Fakcharoenphol, Rao, Talwar 04], improving [Bartal 96+98])

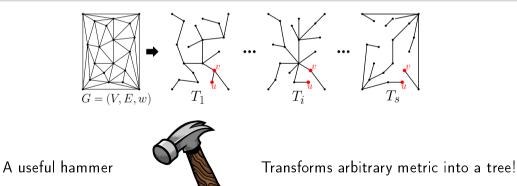
Every n-point metric space (X, d) embeds into distribution \mathcal{D} over dominating trees with expected distortion $O(\log n)$.

[Alon, Karp, Peleg, West 95]: Tight!

In fact, tight already for the $n \times n$ grid graph!



Theorem ([Fakcharoenphol, Rao, Talwar 04], improving [Bartal 96+98]) Every n-point metric space (X, d) embeds into distribution \mathcal{D} over dominating trees with expected distortion $O(\log n)$.



Theorem ([Fakcharoenphol, Rao, Talwar 04], improving [Bartal 96+98])

Every n-point metric space (X, d) embeds into distribution \mathcal{D} over dominating trees with expected distortion $O(\log n)$.

A useful hammer

Applications:

- Approximation Algorithms.
- Online Algorithms.
- Distributed Computing.

• etc.

Transforms arbitrary metric into a tree!

Outline of the talk

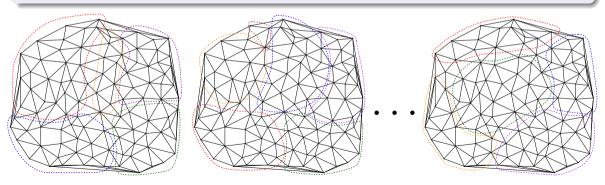
🕕 Introduction

- 2 Stochastic embedding into trees
- Bartal 96 and Padded decompositions
- Online Metric Embeddings
- **(5)** Spanning trees and MPX
- 6 Minor Free Graphs

We will begin our tour of metric embeddings into trees with the classics: [Bartal 96]

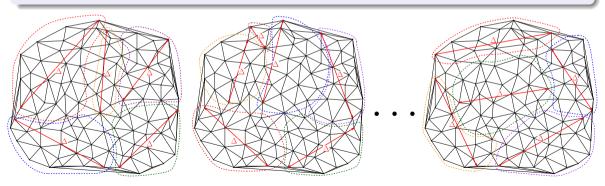
We will begin our tour of metric embeddings into trees with the classics: [Bartal 96]

This one is based on random partitions of metric spaces.

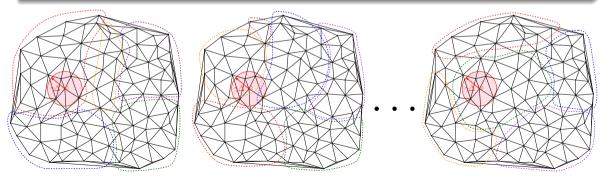


Given a metric space (X, d_X) (or a weight graph G = (V, E, w)). Distribution \mathcal{D} over partitions of G is (β, Δ) -padded decomposition if:

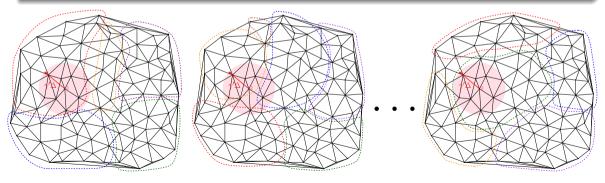
• For every cluster $C \in \mathcal{P} \sim \mathcal{D}$, diam $(C) \leq \Delta$.



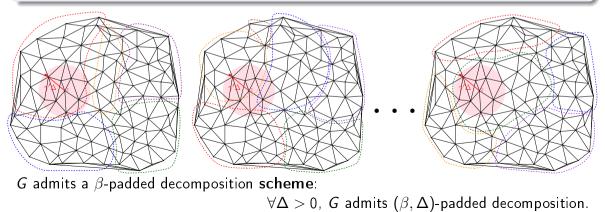
- For every cluster $C \in \mathcal{P} \sim \mathcal{D}$, diam $(C) \leq \Delta$.
- \forall small $0 \leq \gamma$, and $z \in V$, $\Pr[B(z, \gamma \Delta) \subseteq P(z)] \geq e^{-\beta \gamma} \approx 1 \beta \gamma$



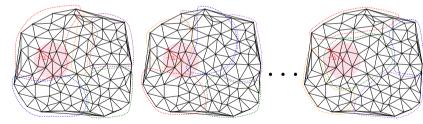
- For every cluster $C \in \mathcal{P} \sim \mathcal{D}$, diam $(C) \leq \Delta$.
- \forall small $0 \leq \gamma$, and $z \in V$, $\Pr[B(z, \gamma \Delta) \subseteq P(z)] \geq e^{-\beta \gamma} \approx 1 \beta \gamma$



- For every cluster $C \in \mathcal{P} \sim \mathcal{D}$, diam $(C) \leq \Delta$.
- \forall small $0 \leq \gamma$, and $z \in V$, $\Pr[B(z, \gamma \Delta) \subseteq P(z)] \geq e^{-\beta \gamma} \approx 1 \beta \gamma$



- For every cluster $C \in \mathcal{P} \sim \mathcal{D}$, diam $(C) \leq \Delta$.
- \forall small $0 \leq \gamma$, and $z \in V$, $\Pr[B(z, \gamma \Delta) \subseteq P(z)] \geq e^{-\beta \gamma} \approx 1 \beta \gamma$



Note: $\Pr[B(z, \frac{1}{\beta} \cdot \Delta) \subseteq P(z)] \ge \Omega(1).$

Given a metric space (X, d_X) (or a weight graph G = (V, E, w)). Distribution \mathcal{D} over partitions of G is (β, Δ) -padded decomposition if:

- For every cluster $C \in \mathcal{P} \sim \mathcal{D}$, diam(C) $\leq \Delta$.
- \forall small $0 \leq \gamma$, and $z \in V$, $\Pr[B(z, \gamma \Delta) \subseteq P(z)] \geq e^{-\beta \gamma} \approx 1 \beta \gamma$

Theorem ([Bartal 96])

Every n-point metric space admits an $O(\log n)$ -padded decomposition scheme.

Given a metric space (X, d_X) (or a weight graph G = (V, E, w)). Distribution \mathcal{D} over partitions of G is (β, Δ) -padded decomposition if:

- For every cluster $C \in \mathcal{P} \sim \mathcal{D}$, diam(C) $\leq \Delta$.
- \forall small $0 \leq \gamma$, and $z \in V$, $\Pr[B(z, \gamma \Delta) \subseteq P(z)] \geq e^{-\beta \gamma} \approx 1 \beta \gamma$

Theorem ([Bartal 96])

Every n-point metric space admits an $O(\log n)$ -padded decomposition scheme.

This is also tight! [Bartal 96]

Every n-point metric space (X, d_X) admits an $O(\log n)$ -padded decomposition scheme.

- Arbitrarily order X: x_1, x_2, \ldots, x_n .
- 2 For i = 1 to n

Sample
$$r_i \sim \text{Exp}(1)$$
.
 $C_i = B\left(x_i, \tilde{r}_i = r_i \cdot \frac{\Delta}{c \cdot \log n}\right) \setminus \bigcup_{j < i} C_j$
Return (C_1, C_2, \ldots, C_n) .

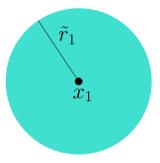
Every n-point metric space (X, d_X) admits an $O(\log n)$ -padded decomposition scheme.

 \tilde{x}_1

- Arbitrarily order X: x_1, x_2, \ldots, x_n .
- **2** For i = 1 to n

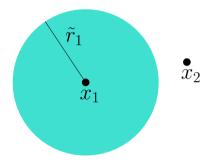
Every n-point metric space (X, d_X) admits an $O(\log n)$ -padded decomposition scheme.

- Arbitrarily order X: x_1, x_2, \ldots, x_n .
- 2 For i = 1 to n
- Sample r_i ~ Exp(1).
 C_i = B (x_i, r_i = r_i · <u>A</u>/c·log n) \ U_{j<i}C_j
 Return (C₁, C₂..., C_n).



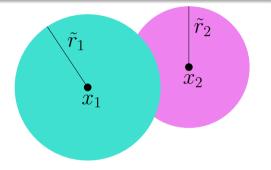
Every n-point metric space (X, d_X) admits an $O(\log n)$ -padded decomposition scheme.

- Arbitrarily order X: x_1, x_2, \ldots, x_n .
- **2** For i = 1 to n
- Sample r_i ~ Exp(1).
 C_i = B (x_i, r_i = r_i · <u>A</u>/c·log n) \ \U_{j < i}C_j
 Return (C₁, C₂..., C_n).



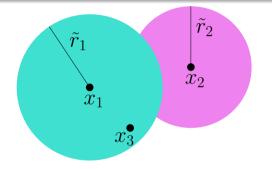
Every n-point metric space (X, d_X) admits an $O(\log n)$ -padded decomposition scheme.

- Arbitrarily order X: x_1, x_2, \ldots, x_n .
- 2 For i = 1 to n
- Sample r_i ~ Exp(1).
 C_i = B (x_i, r_i = r_i · <u>A</u>/c·log n) \ U_{j<i}C_j
 Return (C₁, C₂..., C_n).



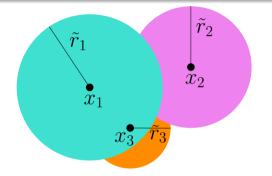
Every n-point metric space (X, d_X) admits an $O(\log n)$ -padded decomposition scheme.

- Arbitrarily order X: x_1, x_2, \ldots, x_n .
- 2 For i = 1 to n
- Sample r_i ~ Exp(1).
 C_i = B (x_i, r_i = r_i · <u>A</u>/c·log n) \ U_{j<i}C_j
 Return (C₁, C₂..., C_n).



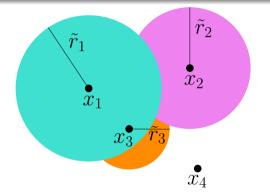
Every n-point metric space (X, d_X) admits an $O(\log n)$ -padded decomposition scheme.

- Arbitrarily order X: x_1, x_2, \ldots, x_n .
- 2 For i = 1 to n
- Sample r_i ~ Exp(1).
 C_i = B (x_i, r_i = r_i · <u>A</u>/c·log n) \ U_{j<i}C_j
 Return (C₁, C₂..., C_n).



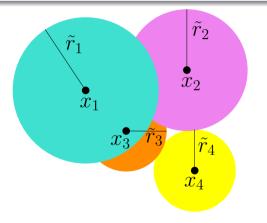
Every n-point metric space (X, d_X) admits an $O(\log n)$ -padded decomposition scheme.

- Arbitrarily order X: x_1, x_2, \ldots, x_n .
- **2** For i = 1 to n
- Sample r_i ~ Exp(1).
 C_i = B (x_i, r_i = r_i · <u>A</u>/c·log n) \ \U_{j < i}C_j
 Return (C₁, C₂..., C_n).



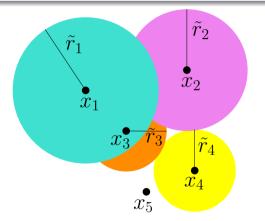
Every n-point metric space (X, d_X) admits an $O(\log n)$ -padded decomposition scheme.

- Arbitrarily order X: x_1, x_2, \ldots, x_n .
- **2** For i = 1 to n
- Sample r_i ~ Exp(1).
 C_i = B (x_i, r_i = r_i · <u>A</u>/c·log n) \ \U_{j < i}C_j
 Return (C₁, C₂..., C_n).



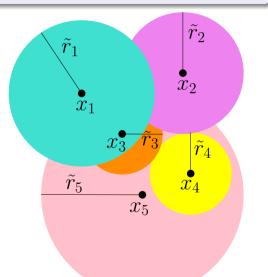
Every n-point metric space (X, d_X) admits an $O(\log n)$ -padded decomposition scheme.

- Arbitrarily order X: x_1, x_2, \ldots, x_n .
- **2** For i = 1 to n
- Sample r_i ~ Exp(1).
 C_i = B (x_i, r_i = r_i · <u>A</u>/c·log n) \ \U_{j < i}C_j
 Return (C₁, C₂..., C_n).



Every n-point metric space (X, d_X) admits an $O(\log n)$ -padded decomposition scheme.

- Arbitrarily order X: x_1, x_2, \ldots, x_n .
- **2** For i = 1 to n
- Sample r_i ~ Exp(1).
 C_i = B (x_i, r_i = r_i · <u>A</u>/c·log n) \ \U_{j < i}C_j
 Return (C₁, C₂..., C_n).



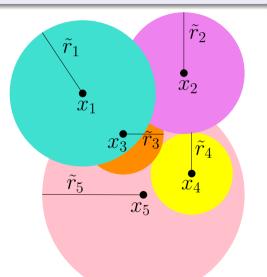
Every n-point metric space (X, d_X) admits an $O(\log n)$ -padded decomposition scheme.

Algorithm:

- Arbitrarily order X: x_1, x_2, \ldots, x_n .
- 2 For i = 1 to n

• Sample
$$r_i \sim \operatorname{Exp}(1)$$
.
• $C_i = B\left(x_i, \tilde{r}_i = r_i \cdot \frac{\Delta}{c \cdot \log n}\right) \setminus \bigcup_{j < i} C_j$
• Return $(C_1, C_2 \dots, C_n)$.

W.h.p. $\forall i, r_i \leq \frac{c}{2} \cdot \log n$



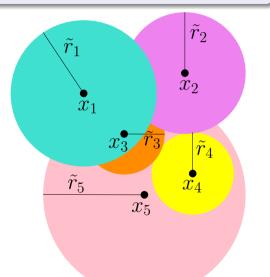
Every n-point metric space (X, d_X) admits an $O(\log n)$ -padded decomposition scheme.

Algorithm:

- Arbitrarily order X: x_1, x_2, \ldots, x_n .
- **2** For i = 1 to n

• Sample
$$r_i \sim \operatorname{Exp}(1)$$
.
• $C_i = B\left(x_i, \tilde{r_i} = r_i \cdot \frac{\Delta}{c \cdot \log n}\right) \setminus \bigcup_{j < i} C_j$
• Return (C_1, C_2, \ldots, C_n) .

W.h.p. $\forall i, r_i \leq \frac{c}{2} \cdot \log n$ Thus all the sampled radii $\leq \frac{\Delta}{2}$.



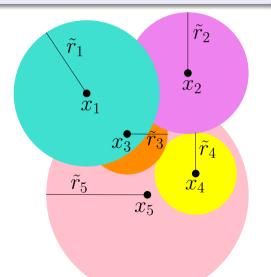
Every n-point metric space (X, d_X) admits an $O(\log n)$ -padded decomposition scheme.

Algorithm:

- Arbitrarily order X: x_1, x_2, \ldots, x_n .
- 3 For i = 1 to n

• Sample
$$r_i \sim \operatorname{Exp}(1)$$
.
• $C_i = B\left(x_i, \tilde{r_i} = r_i \cdot \frac{\Delta}{c \cdot \log n}\right) \setminus \bigcup_{j < i} C_j$
• Return (C_1, C_2, \ldots, C_n) .

W.h.p. $\forall i, r_i \leq \frac{c}{2} \cdot \log n$ Thus all the sampled radii $\leq \frac{\Delta}{2}$. \Rightarrow all clusters have diameter $\leq \Delta$.



Every n-point metric space (X, d_X) admits an $O(\log n)$ -padded decomposition scheme.

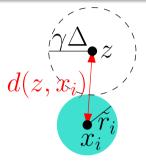
Algorithm:

- Arbitrarily order $X: x_1, x_2, \ldots, x_n$.
- **2** For i = 1 to n
- Sample r_i ~ Exp(1).
 C_i = B (x_i, r_i = r_i · Δ/c·log n) \ U_{j<i}C_j
 Return (C₁, C₂..., C_n).

 $\Pr[B(z, \gamma \Delta) \subseteq P(z)] \geq ??$

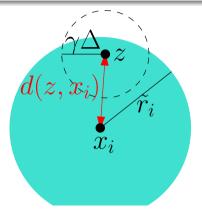
Every n-point metric space (X, d_X) admits an $O(\log n)$ -padded decomposition scheme.

- Arbitrarily order X: x_1, x_2, \ldots, x_n .
- Por i = 1 to n
- Sample r_i ~ Exp(1).
 C_i = B (x_i, r_i = r_i · <u>A</u>/c·log n) \ \Uj<iC_j
 Return (C₁, C₂..., C_n).
- $\Pr[B(z, \gamma \Delta) \subseteq P(z)] \ge ??$ *i* is the first s.t. $C_i \cap B(z, \gamma \Delta) \neq \emptyset$



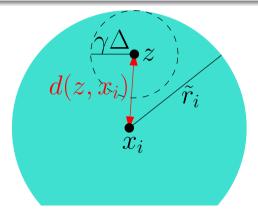
Every n-point metric space (X, d_X) admits an $O(\log n)$ -padded decomposition scheme.

- Arbitrarily order X: x_1, x_2, \ldots, x_n .
- **2** For i = 1 to n
- Sample r_i ~ Exp(1).
 C_i = B (x_i, r_i = r_i · Δ/c·log n) \ U_{j<i}C_j
 Return (C₁, C₂..., C_n).
- $\Pr[B(z, \gamma \Delta) \subseteq P(z)] \ge ??$ *i* is the first s.t. $C_i \cap B(z, \gamma \Delta) \neq \emptyset$



Every n-point metric space (X, d_X) admits an $O(\log n)$ -padded decomposition scheme.

- Arbitrarily order X: x_1, x_2, \ldots, x_n .
- **2** For i = 1 to n
- Sample r_i ~ Exp(1).
 C_i = B (x_i, r_i = r_i · Δ/c·log n) \ U_{j<i}C_j
 Return (C₁, C₂..., C_n).
- $\Pr[B(z, \gamma \Delta) \subseteq P(z)] \ge ??$ *i* is the first s.t. $C_i \cap B(z, \gamma \Delta) \neq \emptyset$



Every n-point metric space (X, d_X) admits an $O(\log n)$ -padded decomposition scheme.

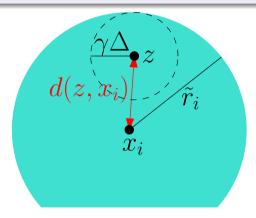
Algorithm:

- Arbitrarily order X: x_1, x_2, \ldots, x_n .
- 2 For i = 1 to n

 $\Pr[B(z, \gamma \Delta) \subseteq P(z)] \ge ??$ *i* is the first s.t. $C_i \cap B(z, \gamma \Delta) \neq \emptyset$

By Memorylessness,

 $\Pr\left[B(z,\gamma\Delta)\subseteq C_i\mid B(z,\gamma\Delta)\cap C_i\neq\emptyset\right]\geq \Pr\left[\tilde{r}_i\geq 2\gamma\Delta\right]=e^{-\gamma\cdot 2c\log n}$



Every n-point metric space (X, d) embeds into distribution \mathcal{D} over dominating trees with expected distortion $O(\log^2 n)$.

For simplicity, we will assume that all the pairwise distances are in $[1, \Phi = n^{10}]$.

Every n-point metric space (X, d) embeds into distribution \mathcal{D} over dominating trees with expected distortion $O(\log^2 n)$.

For simplicity, we will assume that all the pairwise distances are in $[1, \Phi = n^{10}]$. For every $i \in [1, \log \Phi]$ sample an $(O(\log n), 2^i)$ padded decomposition \mathcal{P}_i .

Every n-point metric space (X, d) embeds into distribution \mathcal{D} over dominating trees with expected distortion $O(\log^2 n)$.

For simplicity, we will assume that all the pairwise distances are in $[1, \Phi = n^{10}]$.

For every $i \in [1, \log \Phi]$ sample an $(O(\log n), 2^i)$ padded decomposition \mathcal{P}_i .

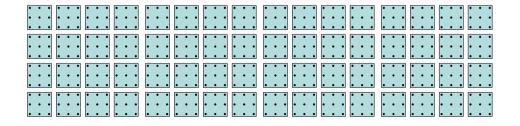
"Force" them into a laminar partition: $\tilde{\mathcal{P}}_1, \tilde{\mathcal{P}}_2, \ldots, \tilde{\mathcal{P}}_{\log \Phi}$. Here x, y clustered together in $\tilde{\mathcal{P}}_i$ iff they are clustered together in $\mathcal{P}_i, \mathcal{P}_{i+1}, \ldots, \mathcal{P}_{\log \Phi}$.

Every n-point metric space (X, d) embeds into distribution \mathcal{D} over dominating trees with expected distortion $O(\log^2 n)$.

For simplicity, we will assume that all the pairwise distances are in $[1, \Phi = n^{10}]$. For every $i \in [1, \log \Phi]$ sample an $(O(\log n), 2^i)$ padded decomposition \mathcal{P}_i . "Force" them into a laminar partition: $\tilde{\mathcal{P}}_1, \tilde{\mathcal{P}}_2, \ldots, \tilde{\mathcal{P}}_{\log \Phi}$. Here x, y clustered together in $\tilde{\mathcal{P}}_i$ iff they are clustered together in $\mathcal{P}_i, \mathcal{P}_{i+1}, \ldots, \mathcal{P}_{\log \Phi}$.

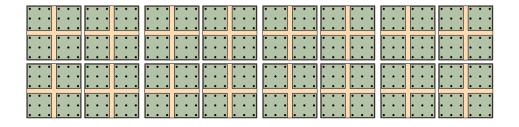
Every n-point metric space (X, d) embeds into distribution \mathcal{D} over dominating trees with expected distortion $O(\log^2 n)$.

For simplicity, we will assume that all the pairwise distances are in $[1, \Phi = n^{10}]$. For every $i \in [1, \log \Phi]$ sample an $(O(\log n), 2^i)$ padded decomposition \mathcal{P}_i . "Force" them into a laminar partition: $\tilde{\mathcal{P}}_1, \tilde{\mathcal{P}}_2, \ldots, \tilde{\mathcal{P}}_{\log \Phi}$. Here x, v clustered together in $\tilde{\mathcal{P}}_i$ iff they are clustered together in $\mathcal{P}_i, \mathcal{P}_{i+1}, \ldots, \mathcal{P}_{\log \Phi}$.



Every n-point metric space (X, d) embeds into distribution \mathcal{D} over dominating trees with expected distortion $O(\log^2 n)$.

For simplicity, we will assume that all the pairwise distances are in $[1, \Phi = n^{10}]$. For every $i \in [1, \log \Phi]$ sample an $(O(\log n), 2^i)$ padded decomposition \mathcal{P}_i . "Force" them into a laminar partition: $\tilde{\mathcal{P}}_1, \tilde{\mathcal{P}}_2, \ldots, \tilde{\mathcal{P}}_{\log \Phi}$. Here x, v clustered together in $\tilde{\mathcal{P}}_i$ iff they are clustered together in $\mathcal{P}_i, \mathcal{P}_{i+1}, \ldots, \mathcal{P}_{\log \Phi}$.



Every n-point metric space (X, d) embeds into distribution \mathcal{D} over dominating trees with expected distortion $O(\log^2 n)$.

For simplicity, we will assume that all the pairwise distances are in $[1, \Phi = n^{10}]$. For every $i \in [1, \log \Phi]$ sample an $(O(\log n), 2^i)$ padded decomposition \mathcal{P}_i . "Force" them into a laminar partition: $\tilde{\mathcal{P}}_1, \tilde{\mathcal{P}}_2, \ldots, \tilde{\mathcal{P}}_{\log \Phi}$. Here x, y clustered together in $\tilde{\mathcal{P}}_i$ iff they are clustered together in $\mathcal{P}_i, \mathcal{P}_{i+1}, \ldots, \mathcal{P}_{\log \Phi}$.

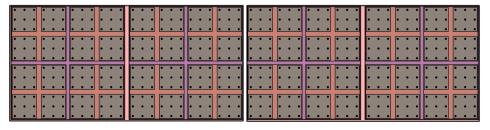
Every n-point metric space (X, d) embeds into distribution \mathcal{D} over dominating trees with expected distortion $O(\log^2 n)$.

Every n-point metric space (X, d) embeds into distribution \mathcal{D} over dominating trees with expected distortion $O(\log^2 n)$.

For simplicity, we will assume that all the pairwise distances are in $[1, \Phi = n^{10}]$. For every $i \in [1, \log \Phi]$ sample an $(O(\log n), 2^i)$ padded decomposition \mathcal{P}_i .

"Force" them into a laminar partition: $\tilde{\mathcal{P}}_1, \tilde{\mathcal{P}}_2, \dots, \tilde{\mathcal{P}}_{\log \Phi}$. Here x, y clustered together in $\tilde{\mathcal{P}}_i$ iff they are clustered together in $\mathcal{P}_i, \mathcal{P}_{i+1}, \dots, \mathcal{P}_{\log \Phi}$.

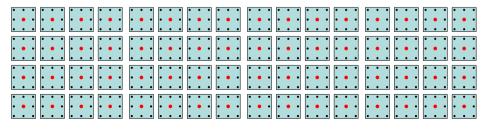
Put a "tree structure" on top of the laminar partition.



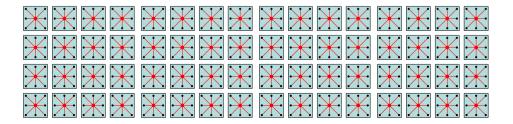
Every n-point metric space (X, d) embeds into distribution \mathcal{D} over dominating trees with expected distortion $O(\log^2 n)$.

For simplicity, we will assume that all the pairwise distances are in $[1, \Phi = n^{10}]$. For every $i \in [1, \log \Phi]$ sample an $(O(\log n), 2^i)$ padded decomposition \mathcal{P}_i . "Force" them into a laminar partition: $\tilde{\mathcal{P}}_1, \tilde{\mathcal{P}}_2, \ldots, \tilde{\mathcal{P}}_{\log \Phi}$. Here x, y clustered together in $\tilde{\mathcal{P}}_i$ iff they are clustered together in $\mathcal{P}_i, \mathcal{P}_{i+1}, \ldots, \mathcal{P}_{\log \Phi}$.

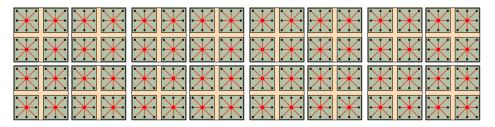
Put a "tree structure" on top of the laminar partition.



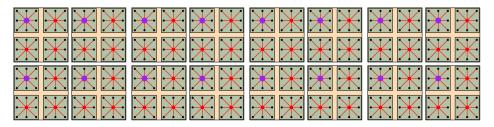
Every n-point metric space (X, d) embeds into distribution \mathcal{D} over dominating trees with expected distortion $O(\log^2 n)$.



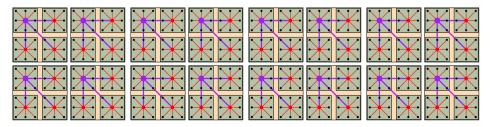
Every n-point metric space (X, d) embeds into distribution \mathcal{D} over dominating trees with expected distortion $O(\log^2 n)$.



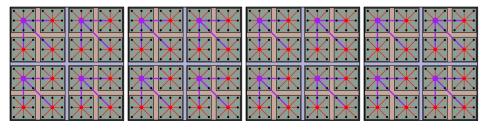
Every n-point metric space (X, d) embeds into distribution \mathcal{D} over dominating trees with expected distortion $O(\log^2 n)$.



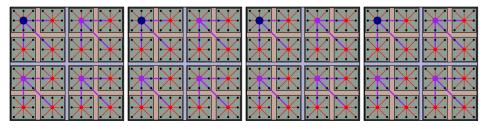
Every n-point metric space (X, d) embeds into distribution \mathcal{D} over dominating trees with expected distortion $O(\log^2 n)$.



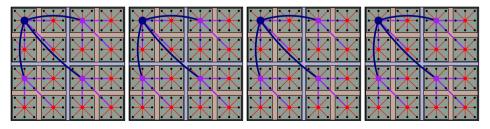
Every n-point metric space (X, d) embeds into distribution \mathcal{D} over dominating trees with expected distortion $O(\log^2 n)$.



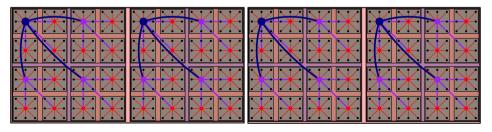
Every n-point metric space (X, d) embeds into distribution \mathcal{D} over dominating trees with expected distortion $O(\log^2 n)$.



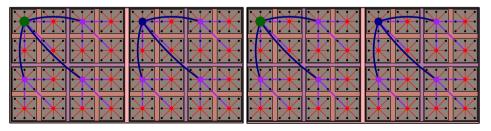
Every n-point metric space (X, d) embeds into distribution \mathcal{D} over dominating trees with expected distortion $O(\log^2 n)$.



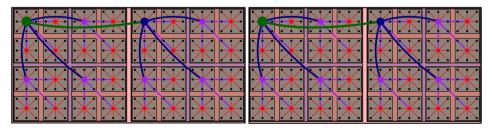
Every n-point metric space (X, d) embeds into distribution \mathcal{D} over dominating trees with expected distortion $O(\log^2 n)$.



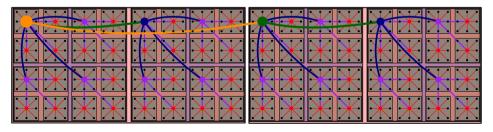
Every n-point metric space (X, d) embeds into distribution \mathcal{D} over dominating trees with expected distortion $O(\log^2 n)$.



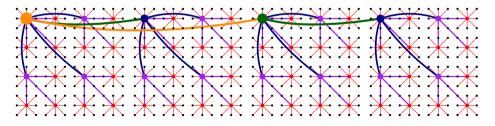
Every n-point metric space (X, d) embeds into distribution \mathcal{D} over dominating trees with expected distortion $O(\log^2 n)$.



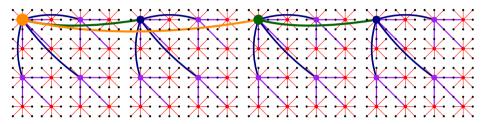
Every n-point metric space (X, d) embeds into distribution \mathcal{D} over dominating trees with expected distortion $O(\log^2 n)$.



Every n-point metric space (X, d) embeds into distribution \mathcal{D} over dominating trees with expected distortion $O(\log^2 n)$.

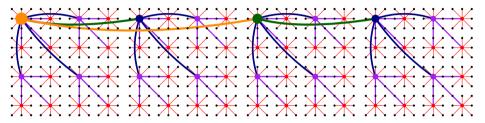


"Force" them into a laminar partition: $\tilde{\mathcal{P}}_1, \tilde{\mathcal{P}}_2, \dots, \tilde{\mathcal{P}}_{\log \Phi}$. Here x, y clustered together in $\tilde{\mathcal{P}}_i$ iff they are clustered together in $\mathcal{P}_i, \mathcal{P}_{i+1}, \dots, \mathcal{P}_{\log \Phi}$. Put a "tree structure" on top of the laminar partition.



The weight of the edges between the $\tilde{\mathcal{P}}_{i-1}$ representatives to their respective $\tilde{\mathcal{P}}_i$ representatives will be 2^i .

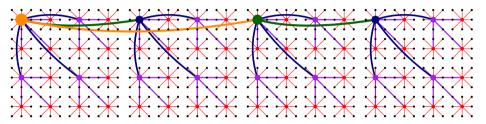
"Force" them into a laminar partition: $\tilde{\mathcal{P}}_1, \tilde{\mathcal{P}}_2, \dots, \tilde{\mathcal{P}}_{\log \Phi}$. Here x, y clustered together in $\tilde{\mathcal{P}}_i$ iff they are clustered together in $\mathcal{P}_i, \mathcal{P}_{i+1}, \dots, \mathcal{P}_{\log \Phi}$. Put a "tree structure" on top of the laminar partition.



The weight of the edges between the $\tilde{\mathcal{P}}_{i-1}$ representatives to their respective $\tilde{\mathcal{P}}_i$ representatives will be 2^i .

Observation 1: For every $x, y \in X$, $d_X(x, y) \le d_T(x, y)$

"Force" them into a laminar partition: $\tilde{\mathcal{P}}_1, \tilde{\mathcal{P}}_2, \dots, \tilde{\mathcal{P}}_{\log \Phi}$. Here x, y clustered together in $\tilde{\mathcal{P}}_i$ iff they are clustered together in $\mathcal{P}_i, \mathcal{P}_{i+1}, \dots, \mathcal{P}_{\log \Phi}$. Put a "tree structure" on top of the laminar partition.

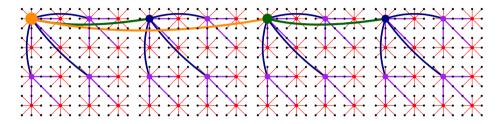


The weight of the edges between the $\tilde{\mathcal{P}}_{i-1}$ representatives to their respective $\tilde{\mathcal{P}}_i$ representatives will be 2^i .

Observation 1: For every $x, y \in X$, $d_X(x, y) \le d_T(x, y)$

Observation 2: If $\mathcal{P}_i(x) = \mathcal{P}_i(y)$, then $d_T(x, y) \leq O(2^i)$

"Force" them into a laminar partition: $\tilde{\mathcal{P}}_1, \tilde{\mathcal{P}}_2, \ldots, \tilde{\mathcal{P}}_{\log \Phi}$. Here x, y clustered together in $\tilde{\mathcal{P}}_i$ iff they are clustered together in $\mathcal{P}_i, \mathcal{P}_{i+1}, \ldots, \mathcal{P}_{\log \Phi}$. Put a "tree structure" on top of the laminar partition.



Observation 1: For every $x, y \in X$, $d_X(x, y) \le d_T(x, y)$

Observation 2: If $\mathcal{P}_i(x) = \mathcal{P}_i(y)$, then $d_T(x, y) \leq O(2^i)$

For every $i \in [1, \log \Phi]$ sample an $(O(\log n), 2^i)$ padded decomposition \mathcal{P}_i . Observation 1: For every $x, y \in X$, $d_X(x, y) \le d_T(x, y)$

Observation 2: If $\mathcal{P}_i(x) = \mathcal{P}_i(y)$, then $d_T(x, y) \leq O(2^i)$

$$\mathbb{E}[d_{\mathcal{T}}(x,y)] \leq \sum_{i=0}^{\log \Phi} O(2^i) \cdot \Pr\left[\mathcal{P}_i(x) \neq \mathcal{P}_i(y)\right]$$

For every $i \in [1, \log \Phi]$ sample an $(O(\log n), 2^i)$ padded decomposition \mathcal{P}_i . Observation 1: For every $x, y \in X$, $d_X(x, y) \le d_T(x, y)$

Observation 2: If $\mathcal{P}_i(x) = \mathcal{P}_i(y)$, then $d_T(x, y) \leq O(2^i)$

$$\mathbb{E}[d_{T}(x,y)] \leq \sum_{i=0}^{\log \Phi} O(2^{i}) \cdot \Pr\left[\mathcal{P}_{i}(x) \neq \mathcal{P}_{i}(y)\right]$$
$$\leq \sum_{i=0}^{\log \Phi} O(2^{i}) \cdot \frac{d_{X}(x,y)}{2^{i}} \cdot O(\log n)$$

For every $i \in [1, \log \Phi]$ sample an $(O(\log n), 2^i)$ padded decomposition \mathcal{P}_i . Observation 1: For every $x, y \in X$, $d_X(x, y) \le d_T(x, y)$

Observation 2: If $\mathcal{P}_i(x) = \mathcal{P}_i(y)$, then $d_T(x, y) \leq O(2^i)$

$$\mathbb{E}[d_T(x,y)] \leq \sum_{i=0}^{\log \Phi} O(2^i) \cdot \Pr\left[\mathcal{P}_i(x) \neq \mathcal{P}_i(y)
ight] \ \leq \sum_{i=0}^{\log \Phi} O(2^i) \cdot rac{d_X(x,y)}{2^i} \cdot O(\log n) \ = O(\log^2 n) \cdot d_X(x,y) \;.$$

For every $i \in [1, \log \Phi]$ sample an $(O(\log n), 2^i)$ padded decomposition \mathcal{P}_i . Observation 1: For every $x, y \in X$, $d_X(x, y) \leq d_T(x, y)$

Observation 2: If $\mathcal{P}_i(x) = \mathcal{P}_i(y)$, then $d_T(x, y) \leq O(2^i)$

 \mathbb{E}

 $d_{\mathcal{T}}(x,y) = O(2^{i_{x,y}})$ where $i_{x,y}$ is the maximum index such that $\mathcal{P}_i(x) \neq \mathcal{P}_i(y)$.

$$egin{aligned} & [d_{\mathcal{T}}(x,y)] \leq \sum_{i=0}^{\log \Phi} O(2^i) \cdot \Pr\left[\mathcal{P}_i(x)
eq \mathcal{P}_i(y)
ight] \ & \leq \sum_{i=0}^{\log \Phi} O(2^i) \cdot rac{d_X(x,y)}{2^i} \cdot O(\log n) \ & = O(\log^2 n) \cdot d_X(x,y) \;. \end{aligned}$$

Theorem ([Bartal 96])

Every n-point metric space (X, d) embeds into distribution \mathcal{D} over dominating trees with expected distortion $O(\log^2 n)$.

Every n-point metric space (X, d) embeds into distribution \mathcal{D} over dominating trees with expected distortion $O(\log^2 n)$.

Every n-point metric space (X, d) embeds into distribution \mathcal{D} over dominating trees with expected distortion $O(\log^2 n)$.

Theorem ([Fakcharoenphol, Rao, Talwar 04], [Bartal 04])

Every n-point metric space (X, d) embeds into distribution \mathcal{D} over dominating trees with expected distortion $O(\log n)$.

Every n-point metric space (X, d) embeds into distribution \mathcal{D} over dominating trees with expected distortion $O(\log^2 n)$.

Theorem ([Fakcharoenphol, Rao, Talwar 04], [Bartal 04])

Every n-point metric space (X, d) embeds into distribution \mathcal{D} over dominating trees with expected distortion $O(\log n)$.

The improvement is achieved by sampling the padded decomposition in various levels in a **correlated** fashion.

Every n-point metric space (X, d) embeds into distribution \mathcal{D} over dominating trees with expected distortion $O(\log^2 n)$.

Theorem ([Fakcharoenphol, Rao, Talwar 04], [Bartal 04])

Every n-point metric space (X, d) embeds into distribution \mathcal{D} over dominating trees with expected distortion $O(\log n)$.

The improvement is achieved by sampling the padded decomposition in various levels in a **correlated** fashion.

Specifically, the probability to cut x, y at scale Δ is

$$pprox rac{d_X(x,y)}{\Delta} \cdot \log rac{|B(x,c \cdot 2^i)|}{|B(x,2^i/c)|}$$

for some constant c, instead of $\approx \frac{d_X(x,y)}{\Delta} \cdot \log n$. Then the sum "telescopes".

Outline of the talk

🕕 Introduction

- 2 Stochastic embedding into trees
 - 3 Bartal 96 and Padded decompositions
- Online Metric Embeddings
- **(5)** Spanning trees and MPX
- 6 Minor Free Graphs

Input: sequence of metric points arriving in an online fashion: $x_1, x_2, \ldots, x_i, \ldots$

Input: sequence of metric points arriving in an online fashion: $x_1, x_2, \ldots, x_i, \ldots$. When receiving x_i , we can also see $d_X(x_1, x_i), d_X(x_2, x_i), \ldots, d_X(x_{i-1}, x_i)$.

Input: sequence of metric points arriving in an online fashion: $x_1, x_2, \ldots, x_i, \ldots$

When receiving x_i , we can also see $d_X(x_1, x_i), d_X(x_2, x_i), \ldots, d_X(x_{i-1}, x_i)$.

For every point x_i we have to assign a vector $\vec{v_i} \in \mathbb{R}^d$.

Input: sequence of metric points arriving in an online fashion: $x_1, x_2, \ldots, x_i, \ldots$

When receiving x_i , we can also see $d_X(x_1, x_i), d_X(x_2, x_i), \ldots, d_X(x_{i-1}, x_i)$.

For every point x_i we have to assign a vector $\vec{v_i} \in \mathbb{R}^d$.

That is we embed $f(x_i) = \vec{v_i}$. Once $\vec{v_i}$ is fixed, impossible to change!

Input: sequence of metric points arriving in an online fashion: $x_1, x_2, \ldots, x_i, \ldots$

When receiving x_i , we can also see $d_X(x_1, x_i), d_X(x_2, x_i), \ldots, d_X(x_{i-1}, x_i)$.

For every point x_i we have to assign a vector $\vec{v_i} \in \mathbb{R}^d$.

That is we embed $f(x_i) = \vec{v_i}$. Once $\vec{v_i}$ is fixed, impossible to change!

Goal: Find a way to embed with small distortion.

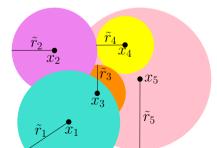
Input: sequence of metric points arriving in an online fashion: $x_1, x_2, \ldots, x_i, \ldots$. When receiving x_i , we can also see $d_X(x_1, x_i), d_X(x_2, x_i), \ldots, d_X(x_{i-1}, x_i)$.

For every point x_i we have to assign a vector $\vec{v}_i \in \mathbb{R}^d$.

That is we embed $f(x_i) = \vec{v_i}$. Once $\vec{v_i}$ is fixed, **impossible** to change!

Goal: Find a way to embed with small distortion.

Observation: [Bartal 96] padded decomposition can work in an online fashion! (as the order is arbitrary)!



Input: sequence of metric points arriving in an online fashion: $x_1, x_2, \ldots, x_i, \ldots$

When receiving x_i , we can also see $d_X(x_1, x_i), d_X(x_2, x_i), \ldots, d_X(x_{i-1}, x_i)$.

For every point x_i we have to assign a vector $ec{v}_i \in \mathbb{R}^d$.

That is we embed $f(x_i) = \vec{v_i}$. Once $\vec{v_i}$ is fixed, impossible to change!

Goal: Find a way to embed with small distortion.

Observation: [Bartal 96] padded decomposition can work in an online fashion! (as the order is arbitrary)!

Theorem ([Indyk, Magen, Sidiropoulos, Zouzias 10])

Given an n-point metric space in an online fashion with aspect ratio Φ , there is a stochastic online metric embedding into trees with expected distortion $O(\log \Phi \cdot \log n)$.

Aspect ratio (a.k.a. spread) $\mathbf{\Phi} = \frac{\max_{x,y \in X} d_X(x,y)}{\min x,y \in X d_X(x,y)}$

Input: sequence of metric points arriving in an online fashion: $x_1, x_2, \ldots, x_i, \ldots$

When receiving x_i , we can also see $d_X(x_1, x_i), d_X(x_2, x_i), \ldots, d_X(x_{i-1}, x_i)$.

For every point x_i we have to assign a vector $\vec{v_i} \in \mathbb{R}^d$.

That is we embed $f(x_i) = \vec{v_i}$. Once $\vec{v_i}$ is fixed, **impossible** to change!

Goal: Find a way to embed with small distortion.

Observation: [Bartal 96] padded decomposition can work in an online fashion! (as the order is arbitrary)!

Theorem ([Indyk, Magen, Sidiropoulos, Zouzias 10])

Given an n-point metric space in an online fashion with aspect ratio Φ , there is a stochastic online metric embedding into trees with expected distortion $O(\log \Phi \cdot \log n)$.

There is an $\Omega(\log \Phi \cdot \log n)$ lower bound [Bartal, Fandina, Umboh 20].

Given an n-point metric space in an online fashion with aspect ratio Φ , there is a stochastic online metric embedding into trees with expected distortion $O(\log \Phi \cdot \log n)$.

One can also use padded decompositions to embed into ℓ_2 (give each partition a different coordinate, repeat many times over all scales).

Given an n-point metric space in an online fashion with aspect ratio Φ , there is a stochastic online metric embedding into trees with expected distortion $O(\log \Phi \cdot \log n)$.

One can also use padded decompositions to embed into ℓ_2 (give each partition a different coordinate, repeat many times over all scales).

Theorem ([Indyk, Magen, Sidiropoulos, Zouzias 10])

Given an n-point metric space in an online fashion with aspect ratio Φ , there is an online metric embedding into ℓ_2 that w.h.p. has distortion $O(\sqrt{\log \Phi} \cdot \log n)$.

Given an n-point metric space in an online fashion with aspect ratio Φ , there is a stochastic online metric embedding into trees with expected distortion $O(\log \Phi \cdot \log n)$.

Theorem ([Indyk, Magen, Sidiropoulos, Zouzias 10])

Given an n-point metric space in an online fashion with aspect ratio Φ , there is an online metric embedding into ℓ_2 that w.h.p. has distortion $O(\sqrt{\log \Phi} \cdot \log n)$.

However, this works only against oblivious adversary (i.e. the input is fixed in advance).

Given an n-point metric space in an online fashion with aspect ratio Φ , there is a stochastic online metric embedding into trees with expected distortion $O(\log \Phi \cdot \log n)$.

Theorem ([Indyk, Magen, Sidiropoulos, Zouzias 10])

Given an n-point metric space in an online fashion with aspect ratio Φ , there is an online metric embedding into ℓ_2 that w.h.p. has distortion $O(\sqrt{\log \Phi} \cdot \log n)$.

However, this works only against oblivious adversary (i.e. the input is fixed in advance).

How can we cope with adaptive adversary?

Given an n-point metric space in an online fashion with aspect ratio Φ , there is an online metric embedding into ℓ_2 that w.h.p. has distortion $O(\sqrt{\log \Phi} \cdot \log n)$.

However, this works only against oblivious adversary (i.e. the input is fixed in advance).

How can we cope with adaptive adversary?

Theorem ([Bhore, F., Tóth 24])

Given an n-point metric space in an **online fashion** with aspect ratio Φ , there is an online **deterministic** metric embedding into ℓ_2 with distortion $O(\sqrt{\log \Phi} \cdot \log n)$.

Given an n-point metric space in an online fashion with aspect ratio Φ , there is an online metric embedding into ℓ_2 that w.h.p. has distortion $O(\sqrt{\log \Phi} \cdot \log n)$.

However, this works only against oblivious adversary (i.e. the input is fixed in advance).

How can we cope with adaptive adversary?

Theorem ([Bhore, F., Tóth 24])

Given an n-point metric space in an **online fashion** with aspect ratio Φ , there is an online **deterministic** metric embedding into ℓ_2 with distortion $O(\sqrt{\log \Phi} \cdot \log n)$.

If the metric space has doubling dimension ddim, then we can get distortion $O(ddim \cdot \sqrt{\log \Phi})$.

Given an n-point metric space in an online fashion with aspect ratio Φ , there is an online metric embedding into ℓ_2 that w.h.p. has distortion $O(\sqrt{\log \Phi} \cdot \log n)$.

However, this works only against oblivious adversary (i.e. the input is fixed in advance).

How can we cope with adaptive adversary?

Theorem ([Bhore, F., Tóth 24])

Given an n-point metric space in an **online fashion** with aspect ratio Φ , there is an online **deterministic** metric embedding into ℓ_2 with distortion $O(\sqrt{\log \Phi} \cdot \log n)$.

If the metric space has doubling dimension ddim, then we can get distortion $O(ddim \cdot \sqrt{\log \Phi})$.

Nothing should be known in advance $(n, \Phi, ddim)$.

Given an n-point metric space in an online fashion with aspect ratio Φ , there is an online metric embedding into ℓ_2 that w.h.p. has distortion $O(\sqrt{\log \Phi} \cdot \log n)$.

However, this works only against oblivious adversary (i.e. the input is fixed in advance).

How can we cope with adaptive adversary?

Theorem ([Bhore, F., Tóth 24])

Given an n-point metric space in an **online fashion** with aspect ratio Φ , there is an online **deterministic** metric embedding into ℓ_2 with distortion $O(\sqrt{\log \Phi} \cdot \log n)$.

If the metric space has doubling dimension ddim, then we can get distortion $O(ddim \cdot \sqrt{\log \Phi})$.

Nothing should be known in advance $(n, \Phi, ddim)$.

There is an $\Omega(\sqrt{\log \Phi})$ L.B. over a planar graph with constant ddim!

Given an n-point metric space in an online fashion with aspect ratio Φ , there is an online metric embedding into ℓ_2 that w.h.p. has distortion $O(\sqrt{\log \Phi} \cdot \log n)$.

However, this works only against oblivious adversary (i.e. the input is fixed in advance).

How can we cope with adaptive adversary?

Theorem ([Bhore, F., Tóth 24])

Given an n-point metric space in an **online fashion** with aspect ratio Φ , there is an online **deterministic** metric embedding into ℓ_2 with distortion $O(\sqrt{\log \Phi} \cdot \log n)$.

One can also get an upper bound of $\tilde{O}(\sqrt{n})$ independent of Φ .

Given an n-point metric space in an online fashion with aspect ratio Φ , there is an online metric embedding into ℓ_2 that w.h.p. has distortion $O(\sqrt{\log \Phi} \cdot \log n)$.

However, this works only against oblivious adversary (i.e. the input is fixed in advance).

How can we cope with adaptive adversary?

Theorem ([Bhore, F., Tóth 24])

Given an n-point metric space in an **online fashion** with aspect ratio Φ , there is an online **deterministic** metric embedding into ℓ_2 with distortion $O(\sqrt{\log \Phi} \cdot \log n)$.

One can also get an upper bound of $\tilde{O}(\sqrt{n})$ independent of Φ .

[Newman Rabinovich 20]: $\Omega(\sqrt{n})$ lower bound.

Given an n-point metric space in an **online fashion** with aspect ratio Φ , there is an online **deterministic** metric embedding into ℓ_2 with distortion $O(\sqrt{\log \Phi} \cdot \log n)$.

Basic idea: The randomness in the algorithm comes from sampling the radii in the decompositions $r_i \sim \text{Exp}(1)$.

Given an n-point metric space in an **online fashion** with aspect ratio Φ , there is an online **deterministic** metric embedding into ℓ_2 with distortion $O(\sqrt{\log \Phi} \cdot \log n)$.

Basic idea: The randomness in the algorithm comes from sampling the radii in the decompositions $r_i \sim \text{Exp}(1)$.

Using the properties of padded decomposition, and considering all possible scales: $\mathbb{E}\left[\|\vec{v_i} - \vec{v_j}\|_2\right] = O(\sqrt{\log \Phi} \cdot \log n) \cdot d_X(x_i, x_j).$

Given an n-point metric space in an **online fashion** with aspect ratio Φ , there is an online **deterministic** metric embedding into ℓ_2 with distortion $O(\sqrt{\log \Phi} \cdot \log n)$.

Basic idea: The randomness in the algorithm comes from sampling the radii in the decompositions $r_i \sim \text{Exp}(1)$.

Using the properties of padded decomposition, and considering all possible scales: $\mathbb{E}\left[\|\vec{v_i} - \vec{v_j}\|_2\right] = O(\sqrt{\log \Phi} \cdot \log n) \cdot d_X(x_i, x_j).$

For x_i , the embedding is a function from r_1, \ldots, r_i to ℓ_2 : $f_i(r_1, \ldots, r_i) = \vec{v_i}$.

Given an n-point metric space in an **online fashion** with aspect ratio Φ , there is an online **deterministic** metric embedding into ℓ_2 with distortion $O(\sqrt{\log \Phi} \cdot \log n)$.

Basic idea: The randomness in the algorithm comes from sampling the radii in the decompositions $r_i \sim \text{Exp}(1)$.

Using the properties of padded decomposition, and considering all possible scales: $\mathbb{E}\left[\|\vec{v_i} - \vec{v_j}\|_2\right] = O(\sqrt{\log \Phi} \cdot \log n) \cdot d_X(x_i, x_j).$

For x_i , the embedding is a function from r_1, \ldots, r_i to ℓ_2 : $f_i(r_1, \ldots, r_i) = \vec{v_i}$.

$$\mathbb{E}\left[\|\vec{v}_{i}-\vec{v}_{j}\|_{2}^{2}\right] = \int_{R=(r_{1},r_{2},...)} \|f_{i}(R)-f_{j}(R)\|_{2}^{2} dR$$

Given an n-point metric space in an **online fashion** with aspect ratio Φ , there is an online **deterministic** metric embedding into ℓ_2 with distortion $O(\sqrt{\log \Phi} \cdot \log n)$.

Basic idea: The randomness in the algorithm comes from sampling the radii in the decompositions $r_i \sim \text{Exp}(1)$.

Using the properties of padded decomposition, and considering all possible scales: $\mathbb{E}\left[\|\vec{v_i} - \vec{v_j}\|_2\right] = O(\sqrt{\log \Phi} \cdot \log n) \cdot d_X(x_i, x_j).$

For x_i , the embedding is a function from r_1, \ldots, r_i to ℓ_2 : $f_i(r_1, \ldots, r_i) = \vec{v_i}$.

$$\mathbb{E}\left[\|\vec{v}_{i}-\vec{v}_{j}\|_{2}^{2}\right] = \int_{R=(r_{1},r_{2},...)} \|f_{i}(R)-f_{j}(R)\|_{2}^{2} dR = \|f_{i}-f_{j}\|_{2}^{2}$$

 $f_1, f_2, \ldots, f_i, \ldots$ live in the the function space L_2 and defined deterministically!

Given an n-point metric space in an **online fashion** with aspect ratio Φ , there is an online **deterministic** metric embedding into ℓ_2 with distortion $O(\sqrt{\log \Phi} \cdot \log n)$.

$$\mathbb{E}\left[\|\vec{v}_{i}-\vec{v}_{j}\|_{2}^{2}\right] = \int_{R=(r_{1},r_{2},...)} \|f_{i}(R) - f_{j}(R)\|_{2}^{2} dR = \|f_{i} - f_{j}\|_{2}^{2}$$

 $f_1, f_2, \ldots, f_i, \ldots$ live in the the function space L_2 and defined deterministically! One can compute vectors $\vec{u_1}, \vec{u_2}, \ldots, \vec{u_i}, \cdots \in \ell_2$ such that

$$\forall i, j, \quad \|\vec{u}_i - \vec{u}_j\|_2 = \|f_i - f_j\|_2$$

Given an n-point metric space in an **online fashion** with aspect ratio Φ , there is an online **deterministic** metric embedding into ℓ_2 with distortion $O(\sqrt{\log \Phi} \cdot \log n)$.

$$\mathbb{E}\left[\|\vec{v}_{i}-\vec{v}_{j}\|_{2}^{2}\right] = \int_{R=(r_{1},r_{2},...)} \|f_{i}(R) - f_{j}(R)\|_{2}^{2} dR = \|f_{i} - f_{j}\|_{2}^{2}$$

 $f_1, f_2, \ldots, f_i, \ldots$ live in the the function space L_2 and defined deterministically! One can compute vectors $\vec{u_1}, \vec{u_2}, \ldots, \vec{u_i}, \cdots \in \ell_2$ such that

$$\forall i, j, \quad \| \vec{u}_i - \vec{u}_j \|_2 = \| f_i - f_j \|_2$$
.

This can also be done in an online fashion. Thus we obtain a deterministic embedding!

Given an n-point metric space in an **online fashion** with aspect ratio Φ , there is an online **deterministic** metric embedding into ℓ_2 with distortion $O(\sqrt{\log \Phi} \cdot \log n)$.

Caveat: we require linear dimension. $\vec{u_n} \in \mathbb{R}^n$.

Given an n-point metric space in an **online fashion** with aspect ratio Φ , there is an online **deterministic** metric embedding into ℓ_2 with distortion $O(\sqrt{\log \Phi} \cdot \log n)$.

Caveat: we require linear dimension $\vec{u_n} \in \mathbb{R}^n$.

It is impossible to use [Johnson, Lindenstrauss 84].

Given an n-point metric space in an **online fashion** with aspect ratio Φ , there is an online **deterministic** metric embedding into ℓ_2 with distortion $O(\sqrt{\log \Phi} \cdot \log n)$.

Caveat: we require linear dimension. $\vec{u_n} \in \mathbb{R}^n$.

It is impossible to use [Johnson, Lindenstrauss 84].

Question

Fix d. Find a deterministic online embedding into \mathbb{R}^d with small distortion.

Given an n-point metric space in an **online fashion** with aspect ratio Φ , there is an online **deterministic** metric embedding into ℓ_2 with distortion $O(\sqrt{\log \Phi} \cdot \log n)$.

Caveat: we require linear dimension. $\vec{u_n} \in \mathbb{R}^n$.

It is impossible to use [Johnson, Lindenstrauss 84].

Question

Fix d. Find a deterministic online embedding into \mathbb{R}^d with small distortion.

• [BFT24]: $\tilde{O}(\sqrt{n})$ upper bound with linear dimension.

Given an n-point metric space in an **online fashion** with aspect ratio Φ , there is an online **deterministic** metric embedding into ℓ_2 with distortion $O(\sqrt{\log \Phi} \cdot \log n)$.

Caveat: we require linear dimension. $\vec{u_n} \in \mathbb{R}^n$.

It is impossible to use [Johnson, Lindenstrauss 84].

Question

Fix d. Find a deterministic online embedding into \mathbb{R}^d with small distortion.

- [BFT24]: $\tilde{O}(\sqrt{n})$ upper bound with linear dimension.
- [Newman Rabinovich 20]: Online embedding into the line \mathbb{R} :
 - Upper bound: $O(n \cdot 6^n)$
 - Lower bound: 2^{n/2}

Given an n-point metric space in an **online fashion** with aspect ratio Φ , there is an online **deterministic** metric embedding into ℓ_2 with distortion $O(\sqrt{\log \Phi} \cdot \log n)$.

Caveat: we require linear dimension. $\vec{u_n} \in \mathbb{R}^n$.

It is impossible to use [Johnson, Lindenstrauss 84].

Question

Fix d. Find a deterministic online embedding into \mathbb{R}^d with small distortion.

- [BFT24]: $\tilde{O}(\sqrt{n})$ upper bound with linear dimension.
- [Newman Rabinovich 20]: Online embedding into the line \mathbb{R} :
 - Upper bound: $O(n \cdot 6^n)$
 - Lower bound: $2^{\frac{n}{2}}$

The question is wide open for d = 2.

Given an n-point metric space in an **online fashion** with aspect ratio Φ , there is an online **deterministic** metric embedding into ℓ_2 with distortion $O(\sqrt{\log \Phi} \cdot \log n)$.

Question

Fix d. Find a deterministic online embedding into \mathbb{R}^d with small distortion.

- [BFT24]: $\tilde{O}(\sqrt{n})$ upper bound with linear dimension.
- [Newman Rabinovich 20]: Online embedding into the line \mathbb{R} :
 - Upper bound: $O(n \cdot 6^n)$
 - Lower bound: 2^{n/2}

The question is wide open for d = 2.

Could we get deterministic distortion poly(n) for constant d?

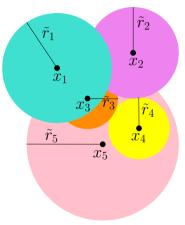
Definition (Padded Decomposition)

Given a metric space (X, d_X) (or a weight graph G = (V, E, w)). Distribution \mathcal{D} over partitions of G is (β, Δ) -padded decomposition if:

- Every cluster $C \in \mathcal{P} \sim \mathcal{D}$ is Δ -bounded.
- For every small $0 \leq \gamma$, and $z \in V$, $\Pr[B(z, \gamma \Delta) \subseteq P(z)] \geq e^{-\beta \gamma}$.

[Bartal 96]: \forall *n*-point metric space admits an $O(\log n)$ -padded decomposition scheme.

[Bartal 96]: \forall *n*-point metric space admits an $O(\log n)$ -padded decomposition scheme.



[Bartal 96] can be executed in an online fashion.

[Bartal 96]: \forall *n*-point metric space admits an $O(\log n)$ -padded decomposition scheme. [Bartal 96] can be executed in an online fashion.

[Klein, Plotkin, Rao 93]: The shortest path metric of every planar graph admits an O(1)-padded decomposition scheme.

[Bartal 96]: \forall *n*-point metric space admits an $O(\log n)$ -padded decomposition scheme. [Bartal 96] can be executed in an online fashion.

[Klein, Plotkin, Rao 93]: The shortest path metric of every planar graph admits an O(1)-padded decomposition scheme.

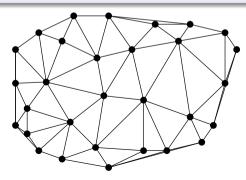
Question

Input: metric points in an online fashion from the **shortest path metric** of a planar graph. **Goal:** Sample from an O(1)-padded decomposition scheme.

Crucially: The planar graph is unknown!

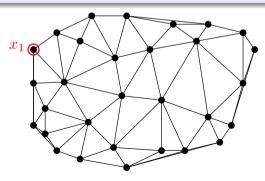
[Klein, Plotkin, Rao 93]: The shortest path metric of every planar graph admits an O(1)-padded decomposition scheme.

Question



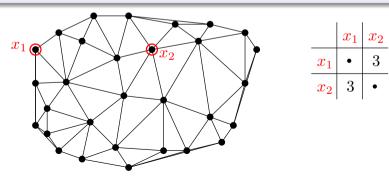
[Klein, Plotkin, Rao 93]: The shortest path metric of every planar graph admits an O(1)-padded decomposition scheme.

Question



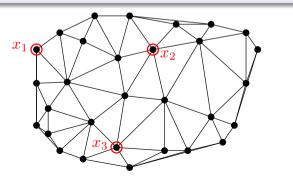
[Klein, Plotkin, Rao 93]: The shortest path metric of every planar graph admits an O(1)-padded decomposition scheme.

Question



[Klein, Plotkin, Rao 93]: The shortest path metric of every planar graph admits an O(1)-padded decomposition scheme.

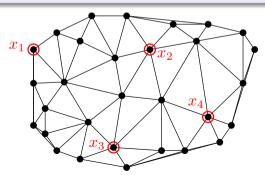
Question



	x_1	x_2	x_3
x_1	•	3	3
x_2	3	•	2
x_3	3	2	•

[Klein, Plotkin, Rao 93]: The shortest path metric of every planar graph admits an O(1)-padded decomposition scheme.

Question



	x_1	x_2	x_3	x_4
x_1	•	3	3	4
x_2	3	•	2	2
x_3	3	2	•	2
x_4	4	2	2	•

Outline of the talk

🕕 Introduction

- 2 Stochastic embedding into trees
 - 3 Bartal 96 and Padded decompositions
- Online Metric Embeddings
- **(5)** Spanning trees and MPX
- 6 Minor Free Graphs

Spanning Trees

Theorem ([FRT04],[Bar04] Stochastic embedding into trees)

Every n-point metric space (X, d) embeds into distribution \mathcal{D} over dominating trees with expected distortion $O(\log n)$.

Suppose that we are given a graph G = (V, E, w), could we sample a spanning tree of G with expected distortion $O(\log n)$?

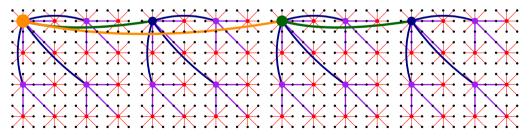
Spanning Trees

Theorem ([FRT04],[Bar04] Stochastic embedding into trees)

Every n-point metric space (X, d) embeds into distribution \mathcal{D} over dominating trees with expected distortion $O(\log n)$.

Suppose that we are given a graph G = (V, E, w), could we sample a spanning tree of G with expected distortion $O(\log n)$?

The construction we saw [Bar96], as well as others are not into subgraphs.



Spanning Trees

Theorem ([FRT04],[Bar04] Stochastic embedding into trees)

Every n-point metric space (X, d) embeds into distribution \mathcal{D} over dominating trees with expected distortion $O(\log n)$.

Suppose that we are given a graph G = (V, E, w), could we sample a spanning tree of G with expected distortion $O(\log n)$?

The construction we saw [Bar96], as well as others are not into subgraphs.

Theorem ([Abraham, Neiman 12] (improving over [AKPW95], [EEST05], [ABN08]))

Every n-vertex graph G = (V, E, w) embeds into distribution \mathcal{D} over it's spanning trees with expected distortion $\tilde{O}(\log n)$.

Spanning Trees

Theorem ([FRT04],[Bar04] Stochastic embedding into trees)

Every n-point metric space (X, d) embeds into distribution \mathcal{D} over dominating trees with expected distortion $O(\log n)$.

Theorem ([AN12] (improving over [AKPW95], [EEST05], [ABN08])) Every n-vertex graph G = (V, E, w) embeds into distribution \mathcal{D} over it's spanning trees with expected distortion $\tilde{O}(\log n)$.

Question

Construct embedding into spanning trees with expected distortion $O(\log n)$.

Spanning Trees

Theorem ([FRT04],[Bar04] Stochastic embedding into trees)

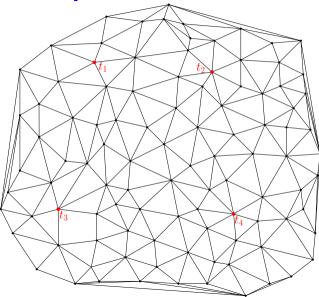
Every n-point metric space (X, d) embeds into distribution \mathcal{D} over dominating trees with expected distortion $O(\log n)$.

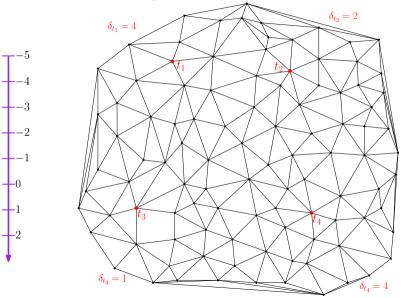
Theorem ([AN12] (improving over [AKPW95], [EEST05], [ABN08])) Every n-vertex graph G = (V, E, w) embeds into distribution \mathcal{D} over it's spanning trees with expected distortion $\tilde{O}(\log n)$.

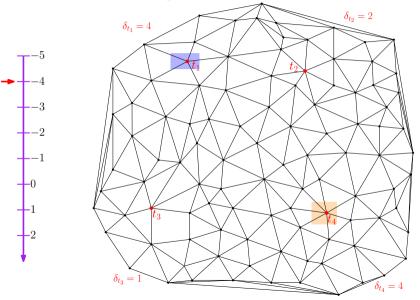
Question

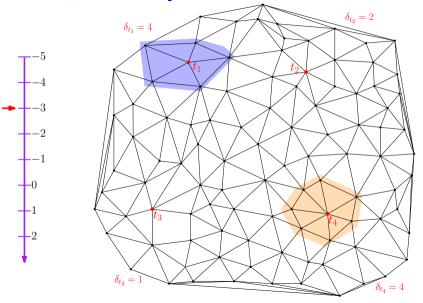
Construct embedding into spanning trees with expected distortion $O(\log n)$.

We will see a recent, simple and elegant construction: [Becker, Emek, Ghaffari, Lenzen 24]. The expected distortion is $O(\log^3 n)$, and it is based on [MPX13].

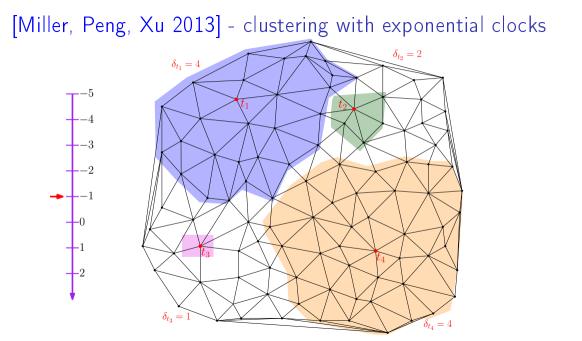


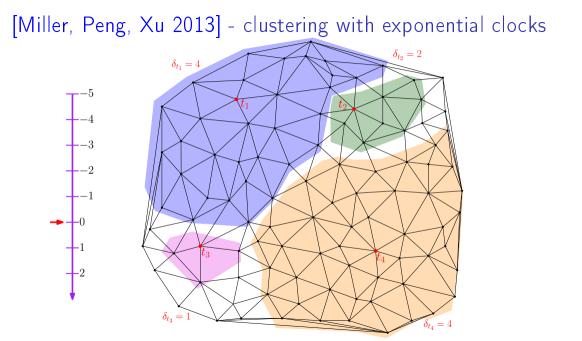




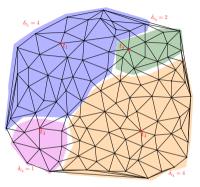


[Miller, Peng, Xu 2013] - clustering with exponential clocks $\delta_{t_2} = 2$ $\delta_{t_1} = 4$ --5 $\delta_{t_3} =$ $\delta_{t_4} = 4$



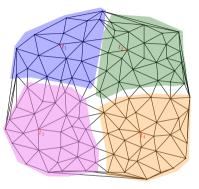


[Miller, Peng, Xu 2013] - clustering with exponential clocks $\delta_{t_2} = 2$ $\delta_{t_1} = 4$ --5 0 $\delta_{t_3} =$ $\delta_{t_4} = 4$



Formally, for $v \in V$ set $f_v(t) = \delta_t - d_G(v, t)$.

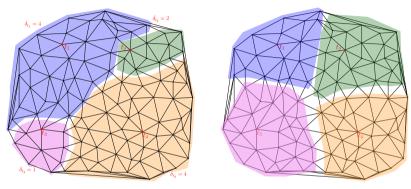
v joins the cluster C_t of the center t maximizing f_v .



Formally, for $v \in V$ set $f_v(t) = \delta_t - d_G(v, t)$.

v joins the cluster C_t of the center t maximizing f_v .

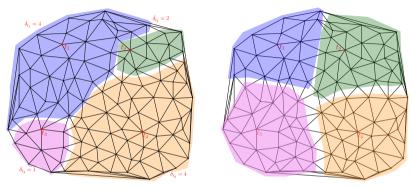
If $\forall t \ \delta_t = 0$, we get Voronoi partition - each vertex goes to the closest center.



Formally, for $v \in V$ set $f_v(t) = \delta_t - d_G(v, t)$.

v joins the cluster C_t of the center t maximizing f_v .

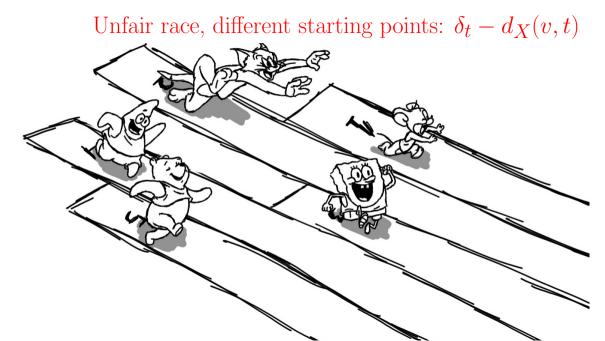
If $\forall t \ \delta_t = 0$, we get Voronoi partition - each vertex goes to the closest center. [MPX13] produces a shifted Voronoi partition.

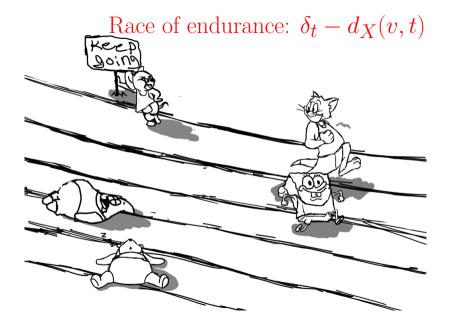


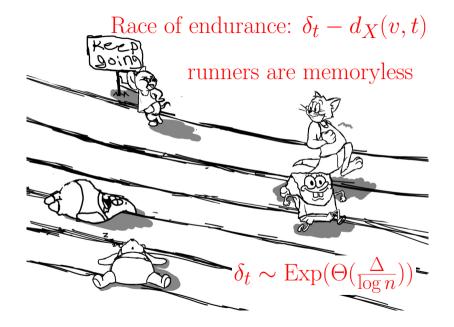
Formally, for $v \in V$ set $f_v(t) = \delta_t - d_G(v, t)$.

v joins the cluster C_t of the center t maximizing f_v .

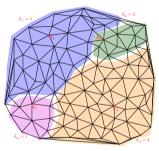
 δ_t sampled i.i.d. using exponential distribution with parameter $\Theta(\frac{\Delta}{\log n})$.



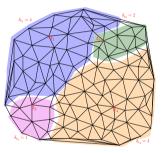




[Miller, Peng, Xu 2013] - clustering with exponential clocks Formally, for $v \in V$ set $f_v(t) = \delta_t - d_G(v, t)$.

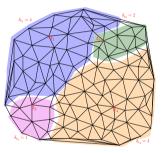


[Miller, Peng, Xu 2013] - clustering with exponential clocks Formally, for $v \in V$ set $f_v(t) = \delta_t - d_G(v, t)$.



 δ_t sampled i.i.d. using exponential distribution with parameter $\Theta(\frac{\Delta}{\log n})$.

[Miller, Peng, Xu 2013] - clustering with exponential clocks Formally, for $v \in V$ set $f_v(t) = \delta_t - d_G(v, t)$.



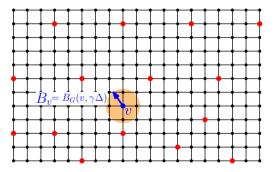
 δ_t sampled i.i.d. using exponential distribution with parameter $\Theta(\frac{\Delta}{\log n})$.

Theorem ([MPX13])

The algorithm produces an $(O(\log n), \Delta)$ -padded decomposition.

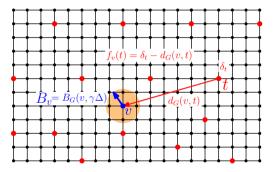
v joins the cluster C_t of the center t maximizing f_v .

 δ_t are samples i.i.d. using exponential distribution with parameter $\Theta(\frac{\Delta}{\log n})$.



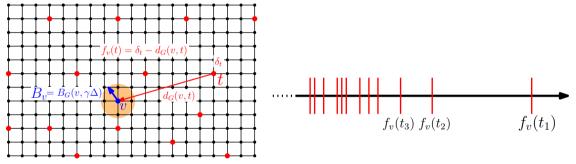
v joins the cluster C_t of the center t maximizing f_v .

 δ_t are samples i.i.d. using exponential distribution with parameter $\Theta(\frac{\Delta}{\log n})$.



v joins the cluster C_t of the center t maximizing f_v .

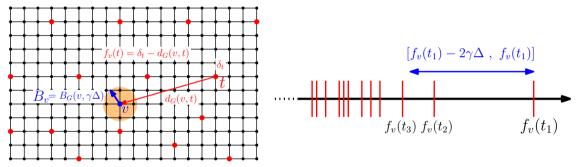
 δ_t are samples i.i.d. using exponential distribution with parameter $\Theta(\frac{\Delta}{\log n})$.



A race between potential centers.

v joins the cluster C_t of the center t maximizing f_v .

 δ_t are samples i.i.d. using exponential distribution with parameter $\Theta(\frac{\Delta}{\log n})$.

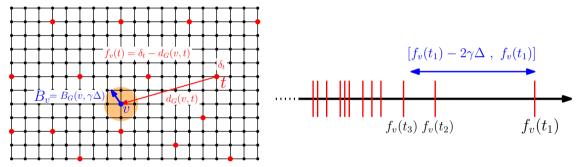


A race between potential centers.

Points in B_v can only join the clusters of "almost winners".

v joins the cluster C_t of the center t maximizing f_v .

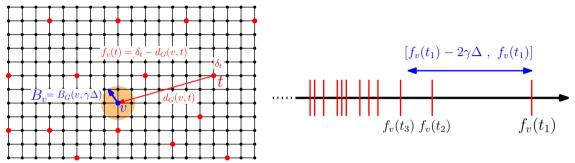
 δ_t are samples i.i.d. using exponential distribution with parameter $\Theta(\frac{\Delta}{\log n})$.



A race between potential centers.

Points in B_v can only join the clusters of "almost winners".

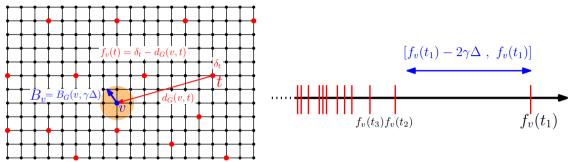
If t_2 is not an "almost winner", all of B_v joins the cluster of t_1 .



Points in B_v can only join the clusters of "almost winners".

If t_2 is not an "almost winner", all of B_v joins the cluster of t_1 .

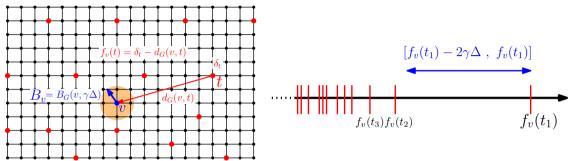
By memoryless, $\Pr[f_v(t_1) - f_v(t_2) \ge 2\gamma\Delta] \ge \Pr[\delta_{t_1} \ge 2\gamma\Delta] = e^{-\gamma \cdot O(\log n)}$.



Points in B_v can only join the clusters of "almost winners".

If t_2 is not an "almost winner", all of B_v joins the cluster of t_1 .

By memoryless, $\Pr[f_v(t_1) - f_v(t_2) \ge 2\gamma\Delta] \ge \Pr[\delta_{t_1} \ge 2\gamma\Delta] = e^{-\gamma \cdot O(\log n)}$.



Points in B_v can only join the clusters of "almost winners".

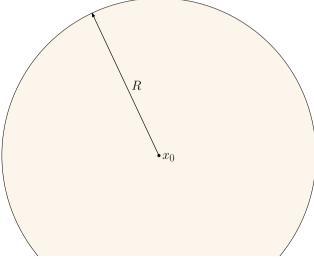
If t_2 is not an "almost winner", all of B_v joins the cluster of t_1 .

By memoryless, $\Pr[f_{v}(t_{1}) - f_{v}(t_{2}) \geq 2\gamma\Delta] \geq \Pr[\delta_{t_{1}} \geq 2\gamma\Delta] = e^{-\gamma \cdot O(\log n)}$.

Theorem ([MPX13])

The algorithm produces an $(O(\log n), \Delta)$ -padded decomposition.

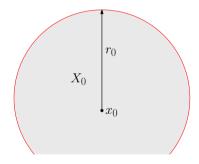
[BEGL24] Stochastic Embedding into Spanning Trees Spanning Tree Algorithm (G, X, x_0, R) Assumption: $X \subseteq B(x_0, R)$



[BEGL24] Stochastic Embedding into Spanning Trees Spanning Tree Algorithm (G, X, x_0, R) Assumption: $X \subseteq B(x_0, R)$ • Sample $r_0 \in \left[\frac{1}{2}, \frac{2}{3}\right] \cdot R$ u.a.r. $\frac{1}{2}R$ r_0 \mathbf{v}_{x_0}

[BEGL24] Stochastic Embedding into Spanning Trees Spanning Tree Algorithm (G, X, x_0, R)

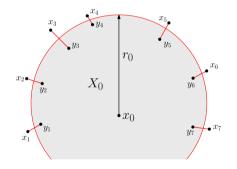
- Assumption: $X \subseteq B(x_0, R)$
 - Sample $r_0 \in [\frac{1}{2}, \frac{2}{3}] \cdot R$ u.a.r.
 - 2 $X_0 = B(x_0, r_0).$

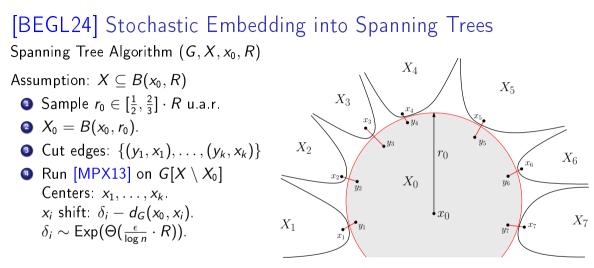


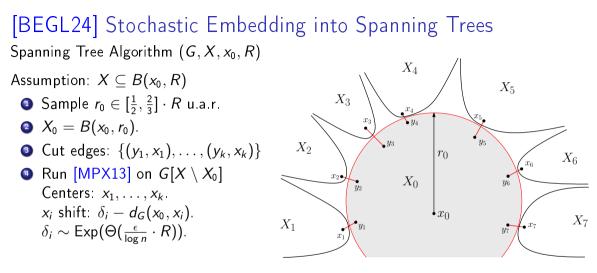
[BEGL24] Stochastic Embedding into Spanning Trees Spanning Tree Algorithm (G, X, x_0, R)

Assumption: $X \subseteq B(x_0, R)$

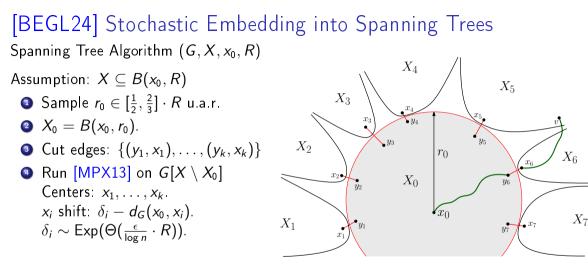
- **3** Sample $r_0 \in [\frac{1}{2}, \frac{2}{3}] \cdot R$ u.a.r.
- 2 $X_0 = B(x_0, r_0).$
- **Out edges:** $\{(y_1, x_1), \dots, (y_k, x_k)\}$





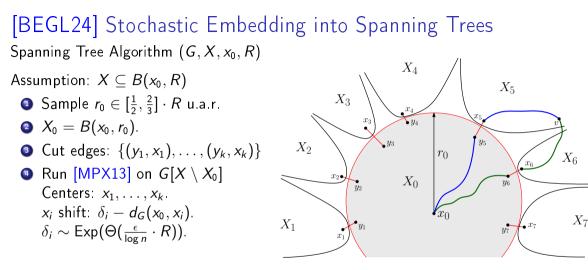


Whp $\forall i, \delta_i \leq \epsilon R$



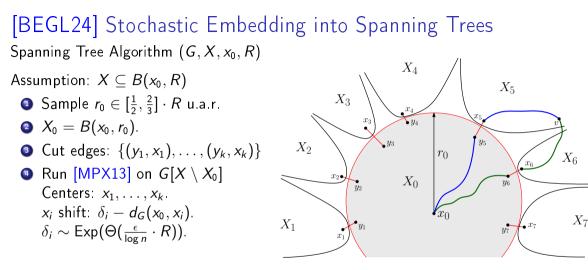
 $d_G(x_0, v)$

Whp $\forall i, \delta_i \leq \epsilon R$



 $d_G(x_0, x_5) + d_{G[X_5]}(x_5, v) \leq d_G(x_0, v) + \epsilon R$

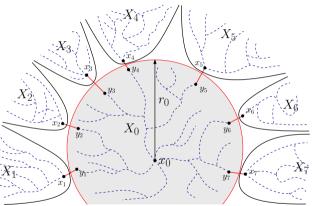
Whp $\forall i, \delta_i \leq \epsilon R$



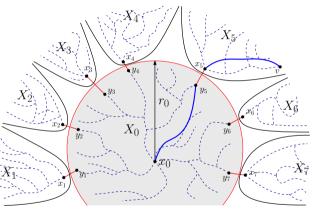
 $\begin{array}{l} d_G(x_0, x_5) + d_{G[X_5]}(x_5, v) \leq d_G(x_0, v) + \epsilon R \\ \leq (1 + 2\epsilon) \cdot d_G(x_0, v) \end{array}$

Whp $\forall i, \delta_i \leq \epsilon R$

- Assumption: $X \subseteq B(x_0, R)$
 - Sample $r_0 \in [\frac{1}{2}, \frac{2}{3}] \cdot R$ u.a.r.
 - **2** $X_0 = B(x_0, r_0).$
 - Cut edges: $\{(y_1, x_1), \dots, (y_k, x_k)\}$
 - **Q** Run [MPX13] on $G[X \setminus X_0]$ Centers: x_1, \ldots, x_k . x_i shift: $\delta_i - d_G(x_0, x_i)$. $\delta_i \sim \text{Exp}(\Theta(\frac{\epsilon}{\log n} \cdot R))$.
 - Recurse: $T_i = STA(G, X_i, x_i, R_i)$
 - $\bullet \quad T \leftarrow \text{cut edges } \bigcup \{T_i\}_{i=0}^k.$



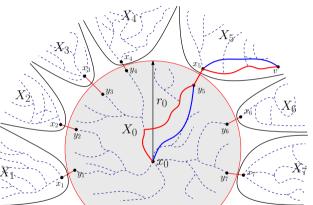
- Assumption: $X \subseteq B(x_0, R)$
 - Sample $r_0 \in [\frac{1}{2}, \frac{2}{3}] \cdot R$ u.a.r.
 - **2** $X_0 = B(x_0, r_0).$
 - Cut edges: $\{(y_1, x_1), \dots, (y_k, x_k)\}$
 - **Q** Run [MPX13] on $G[X \setminus X_0]$ Centers: x_1, \ldots, x_k . x_i shift: $\delta_i - d_G(x_0, x_i)$. $\delta_i \sim \text{Exp}(\Theta(\frac{\epsilon}{\log n} \cdot R))$.
 - Recurse: $T_i = STA(G, X_i, x_i, R_i)$
 - $\bullet \quad T \leftarrow \text{cut edges } \bigcup \{T_i\}_{i=0}^k.$



 $d_G(x_0,x_5) + d_{G[X_5]}(x_5,v) \leq (1+2\epsilon) \cdot d_G(x_0,v)$

- Assumption: $X \subseteq B(x_0, R)$
 - Sample $r_0 \in [\frac{1}{2}, \frac{2}{3}] \cdot R$ u.a.r.
 - **2** $X_0 = B(x_0, r_0).$
 - Cut edges: $\{(y_1, x_1), \dots, (y_k, x_k)\}$
 - **Q** Run [MPX13] on $G[X \setminus X_0]$ Centers: x_1, \ldots, x_k . x_i shift: $\delta_i - d_G(x_0, x_i)$. $\delta_i \sim \text{Exp}(\Theta(\frac{\epsilon}{\log n} \cdot R))$.

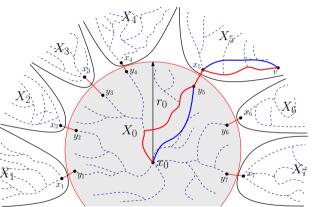
 - $\bullet \quad T \leftarrow \text{cut edges } \bigcup \{T_i\}_{i=0}^k.$



$$\begin{split} & d_G(x_0, x_5) + d_{G[X_5]}(x_5, v) \leq (1+2\epsilon) \cdot d_G(x_0, v) \\ & d_T(x_0, v) \leq (1+2\epsilon)^{O(\log n)} \cdot d_G(x_0, v) \end{split}$$

- Assumption: $X \subseteq B(x_0, R)$
 - Sample $r_0 \in [\frac{1}{2}, \frac{2}{3}] \cdot R$ u.a.r.
 - **2** $X_0 = B(x_0, r_0).$
 - Cut edges: $\{(y_1, x_1), \dots, (y_k, x_k)\}$
 - **Q** Run [MPX13] on $G[X \setminus X_0]$ Centers: x_1, \ldots, x_k . x_i shift: $\delta_i - d_G(x_0, x_i)$. $\delta_i \sim \text{Exp}(\Theta(\frac{\epsilon}{\log n} \cdot R))$.

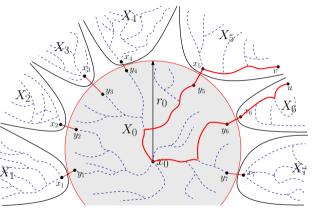
 - $T \leftarrow \text{cut edges } \bigcup \{T_i\}_{i=0}^k$.



$$\begin{split} & d_G(x_0, x_5) + d_{G[X_5]}(x_5, v) \leq (1 + 2\epsilon) \cdot d_G(x_0, v) \\ & d_T(x_0, v) \leq (1 + 2\epsilon)^{O(\log n)} \cdot d_G(x_0, v) \leq 2 \cdot d_G(x_0, v) \\ & \text{For } \epsilon = O(\frac{1}{\log n}) \end{split}$$

- Assumption: $X \subseteq B(x_0, R)$
 - Sample $r_0 \in [\frac{1}{2}, \frac{2}{3}] \cdot R$ u.a.r.
 - **2** $X_0 = B(x_0, r_0).$
 - Cut edges: $\{(y_1, x_1), \dots, (y_k, x_k)\}$
 - **Q** Run [MPX13] on $G[X \setminus X_0]$ Centers: x_1, \ldots, x_k . x_i shift: $\delta_i - d_G(x_0, x_i)$. $\delta_i \sim \text{Exp}(\Theta(\frac{\epsilon}{\log n} \cdot R))$.
 - Recurse: $T_i = STA(G, X_i, x_i, R_i)$
 - $T \leftarrow \text{cut edges } \bigcup \{T_i\}_{i=0}^k$.

Lemma 1: If u, v are separated at scale $R \Rightarrow d_T(u, v) = O(R)$

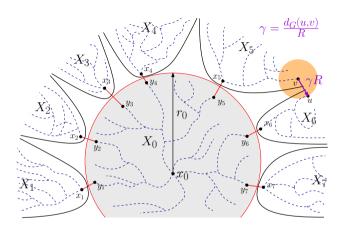


$$\begin{split} & d_G(x_0, x_5) + d_{G[X_5]}(x_5, v) \leq (1 + 2\epsilon) \cdot d_G(x_0, v) \\ & d_T(x_0, v) \leq (1 + 2\epsilon)^{O(\log n)} \cdot d_G(x_0, v) \leq 2 \cdot d_G(x_0, v) \\ & \text{For } \epsilon = O(\frac{1}{\log n}) \end{split}$$

- **1** Sample $r_0 \in [\frac{1}{2}, \frac{2}{3}] \cdot R$ u.a.r.
- **2** $X_0 = B(x_0, r_0).$
- Cut edges: $\{(y_1, x_1), \ldots, (y_k, x_k)\}$
- **Q** Run [MPX13] on $G[X \setminus X_0]$ Centers: x_1, \ldots, x_k . x_i shift: $\delta_i - d_G(x_0, x_i)$. $\delta_i \sim \text{Exp}(\Theta(\frac{\epsilon}{\log n} \cdot R))$.
- Securse: $T_i = STA(G, X_i, x_i, R_i)$ $T \leftarrow \text{cut edges } \bigcup \{T_i\}_{i=0}^k$.

Lemma 1: If u, v are separated at scale $R \Rightarrow d_T(u, v) = O(R)$

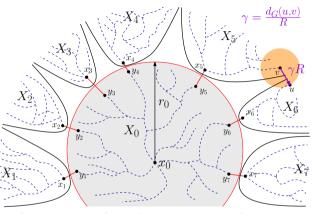
Lemma 2: $\Pr[P_R(v) \neq P_R(u)] \ge$



For
$$\epsilon = O(\frac{1}{\log n})$$

- **1** Sample $r_0 \in [\frac{1}{2}, \frac{2}{3}] \cdot R$ u.a.r.
- **2** $X_0 = B(x_0, r_0).$
- Cut edges: $\{(y_1, x_1), \ldots, (y_k, x_k)\}$
- **Q** Run [MPX13] on $G[X \setminus X_0]$ Centers: x_1, \ldots, x_k . x_i shift: $\delta_i - d_G(x_0, x_i)$. $\delta_i \sim \text{Exp}(\Theta(\frac{\epsilon}{\log n} \cdot R))$.
- Recurse: $T_i = STA(G, X_i, x_i, R_i)$ • $T \leftarrow \text{cut edges } \bigcup \{T_i\}_{i=0}^k$.
- **Lemma 1**: If u, v are separated at scale $R \Rightarrow d_T(u, v) = O(R)$

Lemma 2: $\Pr[P_R(v) \neq P_R(u)] \ge$



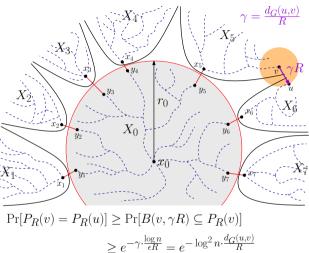
 $\Pr[P_R(v) = P_R(u)] \geq \Pr[B(v,\gamma R) \subseteq P_R(v)]$

For
$$\epsilon = O(\frac{1}{\log n})$$

- **1** Sample $r_0 \in [\frac{1}{2}, \frac{2}{3}] \cdot R$ u.a.r.
- **2** $X_0 = B(x_0, r_0).$
- Cut edges: $\{(y_1, x_1), \ldots, (y_k, x_k)\}$
- **Q** Run [MPX13] on $G[X \setminus X_0]$ Centers: x_1, \ldots, x_k . x_i shift: $\delta_i - d_G(x_0, x_i)$. $\delta_i \sim \text{Exp}(\Theta(\frac{\epsilon}{\log n} \cdot R))$.

Lemma 1: If u, v are separated at scale $R \Rightarrow d_T(u, v) = O(R)$

Lemma 2: $\Pr[P_R(v) \neq P_R(u)] \ge \log^2 n \cdot \frac{d_G(u,v)}{R}$

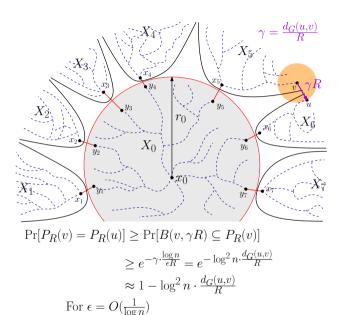


$$\begin{split} &\geq e^{-\gamma \cdot \frac{\log n}{\epsilon R}} = e^{-\log^2 n \cdot \frac{d_G(u,v)}{R}} \\ &\approx 1 - \log^2 n \cdot \frac{d_G(u,v)}{R} \\ & \text{For } \epsilon = O(\frac{1}{\log n}) \end{split}$$

Lemma 1: If u, v are separated at scale $R \Rightarrow d_T(u, v) = O(R)$

Lemma 2: $\Pr[P_R(v) \neq P_R(u)] \ge \log^2 n \cdot \frac{d_G(u,v)}{R}$

$$\mathbb{E}[d_{\mathcal{T}}(x,y)] \ \leq \sum_{i=0}^{\log \Phi} O(2^i) \cdot \Pr\left[\mathcal{P}_i(x)
eq \mathcal{P}_i(y)
ight] \ \leq \sum_{i=0}^{\log \Phi} O(2^i) \cdot rac{d_X(x,y)}{2^i} \cdot O(\log^2 n) \ = O(\log^3 n) \cdot d_X(x,y) \; .$$



Outline of the talk

🕕 Introduction

- 2 Stochastic embedding into trees
- Bartal 96 and Padded decompositions
- Online Metric Embeddings
- **5** Spanning trees and MPX
- 6 Minor Free Graphs

Theorem ([FRT04],[Bar04] Stochastic embedding into trees)

Every n-point metric space (X, d) embeds into distribution \mathcal{D} over dominating trees with expected distortion $O(\log n)$.

Theorem ([FRT04],[Bar04] Stochastic embedding into trees)

Every n-point metric space (X, d) embeds into distribution \mathcal{D} over dominating trees with expected distortion $O(\log n)$.

Tight!

Theorem ([FRT04],[Bar04] Stochastic embedding into trees)

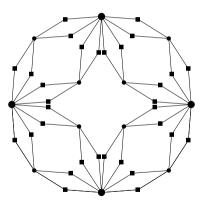
Every n-point metric space (X, d) embeds into distribution \mathcal{D} over dominating trees with expected distortion $O(\log n)$.

Tight!

Try special graph families!

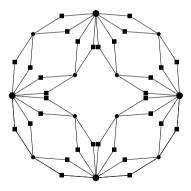
Special graph families:

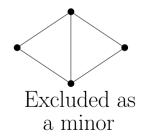
• Planar.



Special graph families:

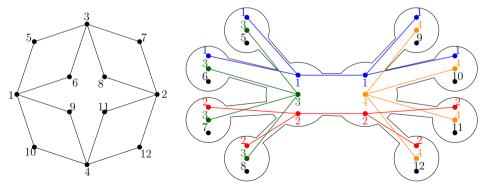
- Planar.
- Excluding a fixed minor.





Special graph families:

- Planar.
- Excluding a fixed minor.
- Bounded treewidth.



Theorem ([FRT04], improving [Bartal 96+98])

Every n-point metric space (X, d) embeds into distribution \mathcal{D} over trees with expected distortion $O(\log n)$.

Tight!

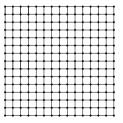
Planar graphs into trees, could we do **better**?

Theorem ([FRT04], improving [Bartal 96+98])

Every n-point metric space (X, d) embeds into distribution \mathcal{D} over trees with expected distortion $O(\log n)$.

Tight!

Planar graphs into trees, could we do **better**? No! [AKPW95]: [FRT04] is tight already for the $n \times n$ grid graph!



Theorem ([FRT04], improving [Bartal 96+98])

Every n-point metric space (X, d) embeds into distribution \mathcal{D} over trees with expected distortion $O(\log n)$.

Tight!

Planar graphs into trees, could we do **better**? No! Perhaps try a richer target space?

Theorem ([FRT04], improving [Bartal 96+98])

Every n-point metric space (X, d) embeds into distribution \mathcal{D} over trees with expected distortion $O(\log n)$.

Tight!

Planar graphs into trees, could we do **better**? No! Perhaps try a richer target space? Planar graphs into **low treewidth** graphs, could we do **better**?

Theorem ([FRT04], improving [Bartal 96+98])

Every n-point metric space (X, d) embeds into distribution \mathcal{D} over trees with expected distortion $O(\log n)$.

Tight!

Planar graphs into trees, could we do **better**? No! Perhaps try a richer target space? Planar graphs into **low treewidth** graphs, could we do **better**? No!

Theorem ([Chakrabarti, Jaffe, Lee, Vincent 08] Stochastic Lower Bound) $\forall t, \exists n \text{-vertex planar graph } G = (V, E, w) \text{ such that every stochastic embedding into treewidth-t graphs incur distortion } \Omega(\log n).$

Theorem ([CJLV08] Stochastic Lower Bound)

 $\forall t, \exists n \text{-vertex } planar \text{ graph } G = (V, E, w) \text{ such that every stochastic embedding into treewidth-t graphs incur distortion } \Omega(\log n).$

Theorem ([Fox-Epstein, Klein, Schild 19], improving [Eisenstat, Klein, Mathieu 14] Planar into treewidth)

Consider planar graph G with diameter D and parameter $\epsilon \in (0, 1)$, then G embeds into treewidth $\operatorname{poly}(\frac{1}{\epsilon})$ graph with <u>additive</u> distortion ϵD .

Theorem ([CJLV08] Stochastic Lower Bound)

 $\forall t, \exists n \text{-vertex } planar \text{ graph } G = (V, E, w) \text{ such that every stochastic embedding into treewidth-t graphs incur distortion } \Omega(\log n).$

Theorem ([Fox-Epstein, Klein, Schild 19], improving [Eisenstat, Klein, Mathieu 14] Planar into treewidth)

Consider planar graph G with diameter D and parameter $\epsilon \in (0, 1)$, then G embeds into treewidth $poly(\frac{1}{\epsilon})$ graph with <u>additive</u> distortion ϵD . **Deterministically!**

Theorem ([CJLV08] Stochastic Lower Bound)

 $\forall t, \exists n \text{-vertex } planar \text{ graph } G = (V, E, w) \text{ such that every stochastic embedding into treewidth-t graphs incur distortion } \Omega(\log n).$

Theorem ([FKS19] Planar into treewidth)

Consider planar graph G with diameter D and parameter $\epsilon \in (0, 1)$, then G embeds into treewidth $poly(\frac{1}{\epsilon})$ graph with <u>additive</u> distortion ϵD . **Deterministically!**

 $D = \max_{u,v} d_G(u,v)$

Theorem ([CJLV08] Stochastic Lower Bound)

 $\forall t, \exists n \text{-vertex } planar \text{ graph } G = (V, E, w) \text{ such that every stochastic embedding into treewidth-t graphs incur distortion } \Omega(\log n).$

Theorem ([FKS19] Planar into treewidth)

Consider planar graph G with diameter D and parameter $\epsilon \in (0, 1)$, then G embeds into treewidth $poly(\frac{1}{\epsilon})$ graph with <u>additive</u> distortion ϵD . **Deterministically!**

 $D = \max_{u,v} d_G(u,v)$

$$f: G
ightarrow H$$
, tw $(H) = ext{poly}(rac{1}{\epsilon})$ s.t. $orall u, v$,

$$d_G(u,v) \leq d_H(f(u),f(v)) \leq d_G(u,v) + \epsilon D$$
.

Theorem ([FKS19] Planar into treewidth)

Consider planar graph G with diameter D and parameter $\epsilon \in (0, 1)$, then G embeds into treewidth $poly(\frac{1}{\epsilon})$ graph with <u>additive</u> distortion ϵD . **Deterministically!**

 $D = \max_{u,v} d_G(u,v)$

$$f: G
ightarrow H$$
, $ext{tw}(H) = ext{poly}(rac{1}{\epsilon})$ s.t. $orall u, v$,

$$d_G(u,v) \leq d_H(f(u),f(v)) \leq d_G(u,v) + \epsilon D$$
.

[F., Le 22]: Deterministic embedding with additive distortion ϵD into treewidth $O(\epsilon^{-1}(\log \log n)^2)$ graph.

Theorem ([FKS19] Planar into treewidth)

Consider planar graph G with diameter D and parameter $\epsilon \in (0, 1)$, then G embeds into treewidth $poly(\frac{1}{\epsilon})$ graph with <u>additive</u> distortion ϵD . **Deterministically!**

 $D = \max_{u,v} d_G(u,v)$

$$f: G
ightarrow H$$
, $\operatorname{tw}(H) = \operatorname{poly}(rac{1}{\epsilon})$ s.t. $orall u, v$,

$$d_G(u,v) \leq d_H(f(u),f(v)) \leq d_G(u,v) + \epsilon D$$
.

[F., Le 22]: Deterministic embedding with additive distortion ϵD into treewidth $O(\epsilon^{-1}(\log \log n)^2)$ graph.

Applications to: PTAS for Vehicle routing, EPTAS for metric ρ -dominating set, and metric ρ -isolated set.

Theorem ([FKS19] Planar into treewidth)

Consider planar graph G with **diameter** D and parameter $\epsilon \in (0, 1)$, then G embeds into treewidth $\operatorname{poly}(\frac{1}{\epsilon})$ graph with <u>additive</u> distortion ϵD .

What about minor-free graphs?

Theorem ([FKS19] Planar into treewidth)

Consider planar graph G with diameter D and parameter $\epsilon \in (0, 1)$, then G embeds into treewidth $\operatorname{poly}(\frac{1}{\epsilon})$ graph with <u>additive</u> distortion ϵD .

What about minor-free graphs? No!

Theorem ([Cohen-Addad, F., Klein, Le 20] Minor lower bound)

 $\exists n \text{-vertex } K_6 \text{-free graph } G = (V, E, w) \text{ s.t. every classic embedding} \\ into \ o(\sqrt{n}) \text{-treewidth graph incur additive distortion } \frac{D}{20}.$

Theorem ([FKS19] Planar into treewidth)

Consider planar graph G with diameter D and parameter $\epsilon \in (0, 1)$, then G embeds into treewidth $\operatorname{poly}(\frac{1}{\epsilon})$ graph with <u>additive</u> distortion ϵD .

What about minor-free graphs? No!

Theorem ([CFKL20] Minor lower bound)

 $\exists n \text{-vertex } K_6 \text{-free graph } G = (V, E, w) \text{ s.t. every classic embedding} \\ into \ o(\sqrt{n}) \text{-treewidth graph incur additive distortion } \frac{D}{20}.$

Maybe Stochastic?

Theorem ([CFKL20] Minor lower bound)

 $\exists n \text{-vertex } K_6 \text{-free graph } G = (V, E, w) \text{ s.t. every classic embedding} \\ into o(\sqrt{n}) \text{-treewidth graph incur additive distortion } \frac{D}{20}.$

Theorem ([**F.**, Le 22] Minor stochastic embedding (improving over [CFKL20]))

For $\epsilon \in (0, 1)$, every n-point K_r -free graph with diameter D, stochastically embeds into distribution \mathcal{D} over $O_r(\frac{(\log \log n)^2}{\epsilon^2})$ -treewidth graphs with expected additive distortion ϵD .

Theorem ([FL22] Minor stochastic embedding (improving over [CFKL20])) For $\epsilon \in (0, 1)$, every n-point K_r -free graph with diameter D, stochastically embeds into distribution \mathcal{D} over $O_r(\frac{(\log \log n)^2}{\epsilon^2})$ -treewidth graphs with expected additive distortion ϵD .

 $\forall u, v, \text{ and } (f, H) \in \text{supp}(\mathcal{D}), \ d_G(u, v) \leq d_H(f(u), f(v)), \text{ and}$

 $\mathbb{E}_{(f,H)\sim\mathcal{D}}[d_H(f(u),f(v))] \leq d_G(u,v) + \epsilon D$.

Theorem ([FL22] Minor stochastic embedding (improving over [CFKL20])) For $\epsilon \in (0, 1)$, every n-point K_r -free graph with diameter D, stochastically embeds into distribution \mathcal{D} over $O_r(\frac{(\log \log n)^2}{\epsilon^2})$ -treewidth graphs with expected additive distortion ϵD .

 $\forall u, v, \text{ and } (f, H) \in \text{supp}(\mathcal{D}), \ d_G(u, v) \leq d_H(f(u), f(v)), \text{ and}$

$$\mathbb{E}_{(f,H)\sim\mathcal{D}}[d_H(f(u),f(v))] \leq d_G(u,v) + \epsilon D .$$

Applications to: PTAS for Vehicle routing.

Theorem ([FL22] Minor stochastic embedding (improving over [CFKL20])) For $\epsilon \in (0, 1)$, every n-point K_r -free graph with diameter D, stochastically embeds into distribution \mathcal{D} over $O_r(\frac{(\log \log n)^2}{\epsilon^2})$ -treewidth graphs with expected additive distortion ϵD .

 $\forall u, v, \text{ and } (f, H) \in \operatorname{supp}(\mathcal{D}), \ d_G(u, v) \leq d_H(f(u), f(v)), \text{ and}$

$$\mathbb{E}_{(f,H)\sim\mathcal{D}}[d_H(f(u),f(v))] \leq d_G(u,v) + \epsilon D .$$

Applications to: PTAS for Vehicle routing.

A version of this embedding (called Ramsey type and clan) been used to obtain QPTAS for the ρ -dominating/isolated set problems.

Minor-free graphs into treewidth graphs

Theorem ([FL22] Minor stochastic embedding (improving over [CFKL20])) For $\epsilon \in (0, 1)$, every n-point K_r -free graph with diameter D, stochastically embeds into distribution \mathcal{D} over $O_r(\frac{(\log \log n)^2}{\epsilon^2})$ -treewidth graphs with expected additive distortion ϵD .

Questions:

- Remove dependency on *n*.
- Improve the ginormous dependence on *r* (structure theorem).

Minor-free graphs into treewidth graphs

Theorem ([FL22] Minor stochastic embedding (improving over [CFKL20])) For $\epsilon \in (0, 1)$, every n-point K_r -free graph with diameter D, stochastically embeds into distribution \mathcal{D} over $O_r(\frac{(\log \log n)^2}{\epsilon^2})$ -treewidth graphs with expected additive distortion ϵD .

Questions:

- Remove dependency on *n*.
- Improve the ginormous dependence on *r* (structure theorem).
- For planar graphs we have treewidth min{poly(ε⁻¹), O(ε⁻¹(log log n)²)}.
 Can we get O(ε⁻¹)?

Theorem ([CJLV08] Stochastic Lower Bound)

 $\forall t, \exists n \text{-vertex } planar \text{ graph } G = (V, E, w) \text{ such that every stochastic embedding into treewidth-t graphs incur distortion } \Omega(\log n).$

Theorem ([CJLV08] Stochastic Lower Bound)

 $\forall t, \exists n \text{-vertex } planar \text{ graph } G = (V, E, w) \text{ such that every stochastic embedding into treewidth-t graphs incur distortion } \Omega(\log n).$

What if we allow t to depend on G?

Theorem ([CJLV08] Stochastic Lower Bound)

 $\forall t, \exists n \text{-vertex } planar \text{ graph } G = (V, E, w) \text{ such that every stochastic embedding into treewidth-t graphs incur distortion } \Omega(\log n).$

What if we allow t to depend on G?

Theorem ([Carroll, Goel 04] Stochastic Lower Bound 2)

Every stochastic embedding of planar graphs into treewidth-t graphs with constant expected distortion requires $t = \Omega(\log n)$.

Theorem ([CJLV08]: constant treewidth $\Rightarrow \Omega(\log n)$ expected distortion) $\forall t, \exists n \text{-vertex planar graph } G = (V, E, w) \text{ such that every stochastic embedding into treewidth-t graphs incur distortion } \Omega(\log n).$

What if we allow t to depend on G?

Theorem ([CG04]: constant expected distortion $\Rightarrow \Omega(\log n)$ treewidth) Every stochastic embedding of planar graphs into treewidth-t graphs with constant expected distortion requires $t = \Omega(\log n)$.

Theorem ([CJLV08]: constant treewidth $\Rightarrow \Omega(\log n)$ expected distortion) $\forall t, \exists n \text{-vertex planar graph } G = (V, E, w) \text{ such that every stochastic embedding into treewidth-t graphs incur distortion } \Omega(\log n).$

What if we allow t to depend on G?

Theorem ([CG04]: constant expected distortion $\Rightarrow \Omega(\log n)$ treewidth) Every stochastic embedding of planar graphs into treewidth-t graphs with constant expected distortion requires $t = \Omega(\log n)$.

Theorem ([Cohen-Addad, Le, Pilipczuk, Pilipczuk 23])

 $\forall \epsilon \in (0, 1)$, every n-point K_r -minor free graph embeds into distribution over graphs with treewidth $\tilde{O}_r(\epsilon^{-1}) \cdot \operatorname{polylog}(n)$ with expected distortion $1 + \epsilon$.

Theorem ([CLPP23])

 $\forall \epsilon \in (0, 1)$, every n-point K_r -minor free graph embeds into distribution over graphs with treewidth $\tilde{O}_r(\epsilon^{-1}) \cdot \operatorname{polylog}(n)$ with expected distortion $1 + \epsilon$.

Applications to: QPTAS for capacitated Vehicle routing

(unit demand, general capacities).

QPTAS for facility location. QPTAS for capacitated *k*-Median.

Theorem ([CLPP23])

 $\forall \epsilon \in (0, 1)$, every n-point K_r -minor free graph embeds into distribution over graphs with treewidth $\tilde{O}_r(\epsilon^{-1}) \cdot \operatorname{polylog}(n)$ with expected distortion $1 + \epsilon$.

Applications to: QPTAS for capacitated Vehicle routing

(unit demand, general capacities).

QPTAS for facility location. QPTAS for capacitated *k*-Median.

Theorem ([Chang, Cohen-Addad, Conroy, Le, Pilipczuk, Pilipczuk 25]) $\forall \epsilon \in (0, 1)$, every *n*-point **planar** graph embeds into **distribution** over graphs with **treewidth** $O(\epsilon^{-1} \cdot \log^3 n)$ with **expected distortion** $1 + \epsilon$.

Theorem ([CLPP23])

 $\forall \epsilon \in (0, 1)$, every n-point K_r -minor free graph embeds into distribution over graphs with treewidth $\tilde{O}_r(\epsilon^{-1}) \cdot \operatorname{polylog}(n)$ with expected distortion $1 + \epsilon$.

Theorem ([CCCLPP25])

 $\forall \epsilon \in (0, 1)$, every n-point planar graph embeds into distribution over graphs with treewidth $O(\epsilon^{-1} \cdot \log^3 n)$ with expected distortion $1 + \epsilon$.

Conjecture [CCCLPP25]

 $1 + \epsilon$ expected distortion from planar graphs into treewidth $O(\epsilon^{-1} \cdot \log n)$ graphs.

• Räcke trees: embedding into trees with $O(\log n)$ expected congestion.

- Räcke trees: embedding into trees with $O(\log n)$ expected congestion.
- Ramsey trees: every metric contains a subset of n^{1-1/k} points that can be embedded into a tree with distortion O(k) (worst case).

- Räcke trees: embedding into trees with $O(\log n)$ expected congestion.
- Ramsey trees: every metric contains a subset of n^{1-1/k} points that can be embedded into a tree with distortion O(k) (worst case).
- Clan: embedding into a single tree with (worst case) distortion O(k) such that every vertex has $n^{\frac{1}{k}}$ copies in expectation.

- Räcke trees: embedding into trees with $O(\log n)$ expected congestion.
- Ramsey trees: every metric contains a subset of n^{1-1/k} points that can be embedded into a tree with distortion O(k) (worst case).
- Clan: embedding into a single tree with (worst case) distortion O(k) such that every vertex has $n^{\frac{1}{k}}$ copies in expectation.
- Scaling distortion: embedding such that $\forall \epsilon$, at most $\epsilon \cdot \binom{n}{2}$ pairs have expected distortion $\Omega(\log \frac{1}{\epsilon})$.

- Räcke trees: embedding into trees with $O(\log n)$ expected congestion.
- Ramsey trees: every metric contains a subset of n^{1-1/k} points that can be embedded into a tree with distortion O(k) (worst case).
- Clan: embedding into a single tree with (worst case) distortion O(k) such that every vertex has $n^{\frac{1}{k}}$ copies in expectation.
- Scaling distortion: embedding such that ∀ε, at most ε · (ⁿ₂) pairs have expected distortion Ω(log 1/ε).
- **Priority** distortion: given ordering x_1, x_2, \ldots, x_n , embedding such that $\forall i < j$, $\mathbb{E}[d_T(x_i, x_j)] = O(\log i) \cdot d_X(x_i, x_j)$.

- Räcke trees: embedding into trees with $O(\log n)$ expected congestion.
- Ramsey trees: every metric contains a subset of n^{1-1/k} points that can be embedded into a tree with distortion O(k) (worst case).
- Clan: embedding into a single tree with (worst case) distortion O(k) such that every vertex has $n^{\frac{1}{k}}$ copies in expectation.
- Scaling distortion: embedding such that ∀ε, at most ε · (ⁿ₂) pairs have expected distortion Ω(log 1/ε).
- **Priority** distortion: given ordering x_1, x_2, \ldots, x_n , embedding such that $\forall i < j$, $\mathbb{E}[d_T(x_i, x_j)] = O(\log i) \cdot d_X(x_i, x_j)$.
- Dynamic: maintaining stochastic embedding into tree of a changing graph.

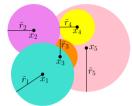
- Räcke trees: embedding into trees with $O(\log n)$ expected congestion.
- Ramsey trees: every metric contains a subset of n^{1-1/k} points that can be embedded into a tree with distortion O(k) (worst case).
- Clan: embedding into a single tree with (worst case) distortion O(k) such that every vertex has $n^{\frac{1}{k}}$ copies in expectation.
- Scaling distortion: embedding such that ∀ε, at most ε · (ⁿ₂) pairs have expected distortion Ω(log 1/ε).
- **Priority** distortion: given ordering x_1, x_2, \ldots, x_n , embedding such that $\forall i < j$, $\mathbb{E}[d_T(x_i, x_j)] = O(\log i) \cdot d_X(x_i, x_j)$.
- Dynamic: maintaining stochastic embedding into tree of a changing graph.
- **Distributed**: sampling stochastic embedding in the CONGEST / LOCAL models.

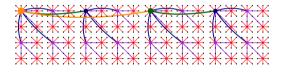
- Räcke trees: embedding into trees with $O(\log n)$ expected congestion.
- Ramsey trees: every metric contains a subset of n^{1-1/k} points that can be embedded into a tree with distortion O(k) (worst case).
- Clan: embedding into a single tree with (worst case) distortion O(k) such that every vertex has $n^{\frac{1}{k}}$ copies in expectation.
- Scaling distortion: embedding such that ∀ε, at most ε · (ⁿ₂) pairs have expected distortion Ω(log 1/ε).
- **Priority** distortion: given ordering x_1, x_2, \ldots, x_n , embedding such that $\forall i < j$, $\mathbb{E}[d_T(x_i, x_j)] = O(\log i) \cdot d_X(x_i, x_j)$.
- Dynamic: maintaining stochastic embedding into tree of a changing graph.
- **Distributed**: sampling stochastic embedding in the CONGEST / LOCAL models.
- Hop-constrained: embedding preserving the hop-distance $d_G^{(h)}(u, v)$.

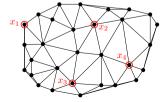
- Räcke trees: embedding into trees with $O(\log n)$ expected congestion.
- Ramsey trees: every metric contains a subset of n^{1-1/k} points that can be embedded into a tree with distortion O(k) (worst case).
- Clan: embedding into a single tree with (worst case) distortion O(k) such that every vertex has $n^{\frac{1}{k}}$ copies in expectation.
- Scaling distortion: embedding such that $\forall \epsilon$, at most $\epsilon \cdot \binom{n}{2}$ pairs have expected distortion $\Omega(\log \frac{1}{\epsilon})$.
- **Priority** distortion: given ordering x_1, x_2, \ldots, x_n , embedding such that $\forall i < j$, $\mathbb{E}[d_T(x_i, x_j)] = O(\log i) \cdot d_X(x_i, x_j)$.
- Dynamic: maintaining stochastic embedding into tree of a changing graph.
- **Distributed**: sampling stochastic embedding in the CONGEST / LOCAL models.
- Hop-constrained: embedding preserving the hop-distance $d_G^{(h)}(u, v)$.
- Digraphs into DAGS.

- Räcke trees: embedding into trees with $O(\log n)$ expected congestion.
- Ramsey trees: every metric contains a subset of n^{1-1/k} points that can be embedded into a tree with distortion O(k) (worst case).
- Clan: embedding into a single tree with (worst case) distortion O(k) such that every vertex has $n^{\frac{1}{k}}$ copies in expectation.
- Scaling distortion: embedding such that $\forall \epsilon$, at most $\epsilon \cdot \binom{n}{2}$ pairs have expected distortion $\Omega(\log \frac{1}{\epsilon})$.
- **Priority** distortion: given ordering x_1, x_2, \ldots, x_n , embedding such that $\forall i < j$, $\mathbb{E}[d_T(x_i, x_j)] = O(\log i) \cdot d_X(x_i, x_j)$.
- Dynamic: maintaining stochastic embedding into tree of a changing graph.
- **Distributed**: sampling stochastic embedding in the CONGEST / LOCAL models.
- Hop-constrained: embedding preserving the hop-distance $d_G^{(h)}(u, v)$.
- Digraphs into DAGS.
- More?

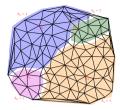
Thank you!

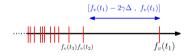


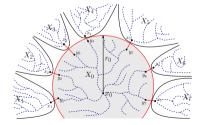




	x_1	x_2	x_3	x_4
x_1	•	3	3	4
x_2	3	•	2	2
x_3	3	2	•	2
x_4	4	2	2	•







Questions?

Outline of the talk

🕕 Introduction

- 2 Stochastic embedding into trees
- Bartal 96 and Padded decompositions
- Online Metric Embeddings
- **5** Spanning trees and MPX
- 6 Minor Free Graphs