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Embedding
(X, dx), (Y, dy) metric spaces. f:(X,dx) — (Y,dy) is called an embedding.

Preserve (approxierly) properties of the original space:

o Distances o Effective resistance
@ Cuts, Flows @ Clustering statistics.

o Commute time @ etc.
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Metric Embeddings

Embedding
(X, dx), (Y, dy) metric spaces. f:(X,dx) — (Y,dy) is called an embedding.

f has distortion t if:

Vx,y € X, dx(x,y) < dy(f(x),f(y)) <t-dx(x,y) .

It is highly desirable that the target space Y will have simple structure.
So that we could run efficient algorithms on it...
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Embedding
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Embedding
(X, dx), (Y, dy) metric spaces. f:(X,dx) — (Y,dy) is called an embedding.

Theorem ([Bourgain 85])

Every n-point metric (X, dx) is embeddable into Euclidean space (R?, || - ||»)
with distortion O(log n).

Theorem ([Linial, London, Rabinovich 95])
[Bou85] is tight.




Theorem ([Bourgain 85])

Every n-point metric (X, dx) is embeddable into Euclidean space (R?, || - ||»)
with distortion O(log n).

Applications:
o Approximation algorithms (e.g. sparsest cut, min graph bandwidth)
o Parallel computation (e.g. SSSP in MPC)
o Computational Biology (e.g. clustering and detecting protein seq.)

o etc.



Theorem ([Rao 99])

Every n-point planar metric (X, dx) (or fixed minor free) is embeddable
into Euclidean space (R9, || - ||,) with distortion O(+/log n).

Planar metric- the shortest path metric of a planar graph.
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Every n-point planar metric (X, dx) (or fixed minor free) is embeddable
into Euclidean space (R9, || - ||,) with distortion O(+/log n).

Planar metric- the shortest path metric of a planar graph.

Theorem ([Newman, Rabinovich 03])
[Rao99] is tight.
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Theorem ([Rao 99])

Every n-point planar metric (X, dx) (or fixed minor free) is embeddable
into Euclidean space (R9, || - ||,) with distortion O(+/log n).

We can get the same result for /1, but could we do better?

GNRS conjecture [Gupta, Newman, Rabinovich, Sinclair 04]

Every fixed minor free graph can be embedded into ¢; with constant distortion.




Embedding
(X, dx), (Y, dy) metric spaces. f:(X,dx) — (Y,dy) is called an embedding.

Theorem ([Johnson, Lindenstrauss 84], Dimension Reduction)

X C (RY, || - ||2) set of size n. Then X embeds into O(log n/e?) dimensional Euclidean
space with distortion 1 + €.




Embedding
(X, dx), (Y, dy) metric spaces. f:(X,dx) — (Y,dy) is called an embedding.

Theorem ([Johnson, Lindenstrauss 84], Dimension Reduction)

X C (RY, | - ||2) set of size n. Then X embeds into O(log n/€?) dimensional Euclidean
space with distortion 1 + €.

Theorem ([Green Larsen, Nelson 17])
[JL84] is tight.




Theorem ([Johnson, Lindenstrauss 84], Dimension Reduction)

X C (RY, || - ||2) set of size n. Then X embeds into O(log n/€?) dimensional Euclidean
space with distortion 1 + €.

Applications:
e Speeding up-computation
o Clustering
e Nearest Neighbor Search
e Machine Learning
@ etc.
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Embedding into Trees

Tree is very simple and desirable target space.

Many NP-hard problems are easy on trees (using dynamic programming).
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Embedding into Trees

Tree is very simple and desirable target space.

Embedding C, requires distortion Q(n).
What if we delete a random edge &7

Erpldr(vi, viq1)] = Prlé ={vi,via}] - (n = 1) + Pr[é # {v;, via}] - 1

1 n—1
—Z.(n—-1
~(n—1)+
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Embedding into Trees

Tree is very simple and desirable target space.

Embedding C, requires distortion Q(n).

What if we delete a random edge &7

Erpldr(vi, viq1)] = Prlé ={vi,via}] - (n = 1) + Pr[é # {v;, via}] - 1
1 n—1 2(n—1)

So(n=1)+ -




Embedding into Trees

Embedding C, requires distortion Q(n).

What if we delete a random edge &7

Erpldr(vi, vir1)] = Pr[é ={vi, visa}] - (n = 1) + Pr[é # {v;, vit1}] - 1

1 -1 2(n—1
n n

By triangle inequality and linearity of expectation
j-1

Vi, v,  Erwpldr(vi,vj)] = Z]ETND[dT(Vm Vgti(mod )] < 2+ dc,(vi, v;) -

q=i



Stochastic Embedding into Trees

Theorem ([Fakcharoenphol, Rao, Talwar 04], improving [Bartal 96+98])

Every n-point metric space (X, d) embeds into distribution D over dominating trees
with expected distortion O(log n).
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Stochastic Embedding into Trees
Theorem ([Fakcharoenphol, Rao, Talwar 04], improving [Bartal 96+98])

Every n-point metric space (X, d) embeds into distribution D over dominating trees
with expected distortion O(log n).

»

G=(V,E w) Ty
For every u,v € X and T € supp(D), dx(u,v) < dr(f(u), f(v)).

For every u,v € X Erp[dr(f(u),f(v))] < O(log n) - dx(u, v).
[Alon, Karp, Peleg, West 95]: Tight!




Stochastic Embedding into Trees
Theorem ([Fakcharoenphol, Rao, Talwar 04], improving [Bartal 96+98])

Every n-point metric space (X, d) embeds into distribution D over dominating trees
with expected distortion O(log n).

[Alon, Karp, Peleg, West 95]: Tight!

In fact, tight already for the n x n grid graph!
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Theorem ([Fakcharoenphol, Rao, Talwar 04], improving [Bartal 96+98])
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Stochastic Embedding into Trees

Theorem ([Fakcharoenphol, Rao, Talwar 04], improving [Bartal 96+98])

Every n-point metric space (X, d) embeds into distribution D over dominating trees
with expected distortion O(log n).

A useful hammer Transforms arbitrary metric into a tree!

Applications:
e Approximation Algorithms.
e Online Algorithms.
e Distributed Computing.

e etc.
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We will begin our tour of metric embeddings into trees with the classics: [Bartal 96]

This one is based on random partitions of metric spaces.
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Definition (Padded Decomposition)

Given a metric space (X, dx) (or a weight graph G = (V, E, w)).
Distribution D over partitions of G is (5, A)-padded decomposition if:

@ For every cluster C € P ~ D, diam(C) < A.
@ Vsmall 0 <~,and z € V,
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VA > 0, G admits (3, A)-padded decomposition.



Definition (Padded Decomposition)

(V,E,w)).

Given a metric space (X, dx) (or a weight graph G

Distribution D over partitions of G is (5, A)-padded decomposition if:

o For every cluster C € P

~ D, diam(C) < A.

Pr[B(z,7A) C P(z)] > e P =~ 1 - By

e Vsmall 0 <~,and z € V,

PAS Y

Note: Pr[B(z, % : A) C P(2)] = Q(1).
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Definition (Padded Decomposition)

Given a metric space (X, dx) (or a weight graph G = (V, E, w)).

Distribution D over partitions of G is (5, A)-padded decomposition if:
@ For every cluster C € P ~ D, diam(C) < A.

o Vsmall0 <y, and z€ V, Pr[B(z,7A) C P(z)] > e #' =1 - By

Theorem ([Bartal 96])

Every n-point metric space admits an O(log n)-padded decomposition scheme.

This is also tight! [Bartal 96]
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Theorem ([Bartal 96]) ]

Every n-point metric space (X, dx) admits an O(log n)-padded decomposition scheme.

Algorithm:
Q Arbitrarily order X: x1,x, ..., X,.
Q@ Fori=1ton
@ Sample r; ~ Exp(1).
o (= B(Xi,ﬁzri'ﬁgn) \Uj<iG
© Return (G, G..., G).

W.h.p. Vi, r; < 5 -logn
Thus all the sampled radii < 2.




Every n-point metric space (X, dx) admits an O(log n)-padded decomposition scheme.

Theorem ([Bartal 96]) ]

Algorithm:
Q Arbitrarily order X: x1,x, ..., X,.
Q@ Fori=1ton
@ Sample r; ~ Exp(1).
o (= B(Xi,ﬁzri'ﬁgn) \Uj<iG
© Return (G, G..., G).

W.h.p. Vi, r; < 5 -logn
Thus all the sampled radii < 2.

=> all clusters have diameter < A.



Theorem ([Bartal 96])

Every n-point metric space (X, dx) admits an O(log n)-padded decomposition scheme.

Algorithm: ///A BN
. - \
o Arbl’frarlly order X: xi,%p,...,Xp. (L.Z !
Q@ Fori=1lton \ /
N\
® Sample r; ~ Exp(1). SO~ g

e (G=8B (X,'7 ri=r- ng,,) \Uj<iG
@ Return (G, G..., C).

Pr(B(z,7A) € P(2)] =277
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Algorithm:
Q Arbitrarily order X: x1,x, ..., X,.
Q@ Fori=1ton
@ Sample r; ~ Exp(1).
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Theorem ([Bartal 96]) J

Every n-point metric space (X, dx) admits an O(log n)-padded decomposition scheme.

Algorithm:
O Arbitrarily order X: x1,x0, ..., X,.
Q@ Fori=1ton
@ Sample r; ~ Exp(1).
o CG= B(Xi,ﬁ:ri'ﬁgJ \Uj<iG
Q Return (G, G..., C).
Pr(B(z,vA) C P(2)] >7?

iis the first s.t. ;N B(z,vA) # 0
By Memorylessness,

Pr [8(27 ’YA) cGqG | B(Z, "}’A) N G 75 (Z)] > Pr [FI > 2,->/A] — @ V2clogn
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Every n-point metric space (X, d) embeds into distribution D over dominating trees
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Theorem ([Fakcharoenphol, Rao, Talwar 04] , [Bartal 04]) |
Every n-point metric space (X, d) embeds into distribution D over dominating trees
with expected distortion O(log n).

The improvement is achieved by sampling the padded decomposition in various levels in
a correlated fashion.

Specifically, the probability to cut x, y at scale A is

%dX(Xv.)/).l |B(X7C'2i)|

A %% B(x,27/0)

for some constant c, instead of ~ w -log n. Then the sum “telescopes’.
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Input: sequence of metric points arriving in an online fashion: x, xp, ..., x;,....
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Goal: Find a way to embed with small distortion.

Observation: [Bartal 96] padded decomposition can work in an online fashion! (as the
order is arbitrary)!

Theorem ([Indyk, Magen, Sidiropoulos, Zouzias 10])

Given an n-point metric space in an online fashion with aspect ratio ®, there is a
stochastic online metric embedding into trees with expected distortion
O(log @ - log n).

max, yex dx(x,y)

Aspect ratio (a.k.a. spread) ® = i x e eXa (y)
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Given an n-point metric space in an online fashion with aspect ratio ®, there is an
online metric embedding into €, that w.h.p. has distortion O(+/log ® - log n).

However, this works only against oblivious adversary (i.e. the input is fixed in advance).

How can we cope with adaptive adversary?

Theorem ([Bhore, F., Té6th 24]) |

Given an n-point metric space in an online fashion with aspect ratio ®, there is an
online deterministic metric embedding into {, with distortion O(+/log ® - log n).

If the metric space has doubling dimension ddim, then we can get distortion
O(ddim - v/log ).

Nothing should be known in advance (n, ®, ddim).
There is an Q(y/log ®) L.B. over a planar graph with constant ddim!
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Given an n-point metric space in an online fashion with aspect ratio ®, there is an
online metric embedding into €, that w.h.p. has distortion O(+/log ® - log n).

However, this works only against oblivious adversary (i.e. the input is fixed in advance).

How can we cope with adaptive adversary?

Theorem ([Bhore, F., Té6th 24]) |

Given an n-point metric space in an online fashion with aspect ratio ®, there is an
online deterministic metric embedding into {, with distortion O(+/log ® - log n).

One can also get an upper bound of O(y/n) independent of ®.

[Newman Rabinovich 20]: ©(1/n) lower bound.
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online deterministic metric embedding into {, with distortion O(+/log ® - log n).

Basic idea: The randomness in the algorithm comes from sampling the radii in the
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Using the properties of padded decomposition, and considering all possible scales:
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fi,f,...,f, ... live in the the function space L, and defined deterministically!
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B[l-gE] = [ 16R) - (RIZAR = 1 - £
R:(r17r2,...)
fi,f,...,f, ... live in the the function space L, and defined deterministically!
One can compute vectors iy, b, ..., U;, - € ¢y such that

Vioj, lla = gilly = 1 = fll, -

This can also be done in an online fashion. Thus we obtain a deterministic embedding!
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Theorem ([Bhore, F., Téth 24])
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Theorem ([Bhore, F., Téth 24])

Given an n-point metric space in an online fashion with aspect ratio ®, there is an
online deterministic metric embedding into {, with distortion O(+/log ® - log n).

Question

Fix d. Find a deterministic online embedding into R with small distortion.

o [BFT24]: O(v/n) upper bound with linear dimension.

@ [Newman Rabinovich 20]: Online embedding into the line R:
» Upper bound: On(n'6”)
» Lower bound: 22

The question is wide open for d = 2.

Could we get deterministic distortion poly(n) for constant d?



Online Padded Decomposition

Definition (Padded Decomposition)

Given a metric space (X, dx) (or a weight graph G = (V, E, w)).

Distribution D over partitions of G is (5, A)-padded decomposition if:
@ Every cluster C € P ~ D is A-bounded.

@ For every small 0 < ~, and z € V, Pr[B(Z,’yA) C P(Z)] > e P |

[Bartal 96]: V n-point metric space admits an O(log n)-padded decomposition scheme.
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Online Padded Decomposition
[Bartal 96]: ¥ n-point metric space admits an O(log n)-padded decomposition scheme.
[Bartal 96] can be executed in an online fashion.

[Klein, Plotkin, Rao 93]: The shortest path metric of every planar graph admits an
O(1)-padded decomposition scheme.

Question
Input: metric points in an online fashion from the shortest path metric of a planar
graph. Goal: Sample from an O(1)-padded decomposition scheme.

Crucially: The planar graph is unknown!
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[Klein, Plotkin, Rao 93]: The shortest path metric of every planar graph admits an
O(1)-padded decomposition scheme.

Question
Input: metric points in an online fashion from the shortest path metric of a planar
graph. Goal: Sample from an O(1)-padded decomposition scheme.
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Online Padded Decomposition

[Klein, Plotkin, Rao 93]: The shortest path metric of every planar graph admits an
O(1)-padded decomposition scheme.

Question
Input: metric points in an online fashion from the shortest path metric of a planar
graph. Goal: Sample from an O(1)-padded decomposition scheme.
T1| L2| T3 | T4

ri| e | 3|34

To| 3| 2] 2

3] 3| 2| |2

4l 2] 2]




Outline of the talk

© Spanning trees and MPX



Spanning Trees

Theorem ([FRTO04],[Bar04] Stochastic embedding into trees)

Every n-point metric space (X, d) embeds into distribution D over dominating trees
with expected distortion O(log n).

Suppose that we are given a graph G = (V, E, w), could we sample a spanning tree
of G with expected distortion O(log n)?
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Theorem ([FRTO04],[Bar04] Stochastic embedding into trees)

Every n-point metric space (X, d) embeds into distribution D over dominating trees

with expected distortion O(log n).

Suppose that we are given a graph G = (V, E, w), could we sample a spanning tree

of G with expected distortion O(log n)?

The construction we saw [Bar96], as well as others are not into subgraphs.
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Spanning Trees

Theorem ([FRTO04],[Bar04] Stochastic embedding into trees)

Every n-point metric space (X, d) embeds into distribution D over dominating trees
with expected distortion O(log n).

Suppose that we are given a graph G = (V, E, w), could we sample a spanning tree
of G with expected distortion O(log n)?

The construction we saw [Bar96], as well as others are not into subgraphs.

Theorem ([Abraham, Neiman 12] (improving over [AKPW95], [EESTO05],
[ABN0S]))

Every n-vertex graph G = (V, E, w) embeds into distribution D over it's spanning

trees with expected distortion O(log n).
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Every n-point metric space (X, d) embeds into distribution D over dominating trees
with expected distortion O(log n).

Theorem ([AN12] (improving over [AKPWO5], [EEST05], [ABNO08])) |

Every n-vertex graph G = (V, E, w) embeds into distribution D over it's spanning

trees with expected distortion O(log n).

Question
Construct embedding into spanning trees with expected distortion O(log n).



Spanning Trees

Theorem ([FRTO04],[Bar04] Stochastic embedding into trees) |

Every n-point metric space (X, d) embeds into distribution D over dominating trees
with expected distortion O(log n).

Theorem ([AN12] (improving over [AKPWO5], [EEST05], [ABNO08])) |

Every n-vertex graph G = (V, E, w) embeds into distribution D over it's spanning

trees with expected distortion O(log n).

Question
Construct embedding into spanning trees with expected distortion O(log n).

We will see a recent, simple and elegant construction: [Becker, Emek, Ghaffari, Lenzen
24]. The expected distortion is O(log® n), and it is based on [MPX13].
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[Miller, Peng, Xu 2013] - clustering with exponential clocks

Formally, for v € V set £,(t) = d; — dg(v, t).

v joins the cluster C; of the center t maximizing f,.

If Vt 6, = 0, we get Voronoi partition - each vertex goes to the closest center.
[MPX13] produces a shifted Voronoi partition.



[Miller, Peng, Xu 2013] - clustering with exponential clocks

4

Formally, for v € V set £,(t) = d; — dg(v, t).

v joins the cluster C; of the center t maximizing f,.

d; sampled i.i.d. using exponential distribution with parameter ©(;;27)-



Unfair race, different starting points: 6 — dx (v, t)
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[Miller, Peng, Xu 2013] - clustering with exponential clocks
Formally, for v € V set £,(t) = 6: — dg(v, t).

6: sampled i.i.d. using exponential distribution with parameter ©(-2-).

logn
Theorem ([MPX13])
The algorithm produces an (O(log n), A)-padded decomposition.
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Proof intuition - what makes it tick?
v joins the cluster C; of the center t maximizing f,.

d; are samples i.i.d. using exponential distribution with parameter ©(>- gn)

Oy

fv( )fv( ) fv(tl)

A race between potential centers.
Points in B, can only join the clusters of “almost winners".

If t, is not an “almost winner”, all of B, joins the cluster of t;.



Proof intuition - what makes it tick?

Lolt) = 0 — da (v, 1) 5 [folt)) = 29A, fu(t1)]
47 < >
e R T B
fv(t3) fv(tQ) fl}(tl)

Points in B, can only join the clusters of “almost winners".
If t, is not an “almost winner”, all of B, joins the cluster of t;.

By memoryless, Pr[f,(t1) — f,(t2) > 2vA] > Pr[6,, > 2yA] = e 7Ollogn),
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Proof intuition - what makes it tick?
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Points in B, can only join the clusters of “almost winners".

If t, is not an “almost winner”, all of B, joins the cluster of t;.

By memoryless, Pr[f,(t1) — f,(t2) > 2vA] > Pr[6,, > 2yA] = e 7Ollogn),



Proof intuition - what makes it tick?

b

B,= Ba(v,74) L1 da(v,t) |
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Points in B, can only join the clusters of “almost winners".

If t, is not an “almost winner”, all of B, joins the cluster of t;.

By memoryless, Pr[f,(t1) — f,(t2) > 2vA] > Pr[6,, > 2yA] = e 7Ollogn),
Theorem ([MPX13])

The algorithm produces an (O(log n), A)-padded decomposition.
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Spanning Tree Algorithm (G, X, xp, R)
Assumption: X C B(x, R)

Q Sample p € [1,2]- Ruar.

@ X = B(x, ro)- e
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[BEGL24] Stochastic Embedding into Spanning Trees

Spanning Tree Algorithm (G, X, xp, R)
Assumption: X C B(x, R)

Q Sample p € [1,2]- Ruar.

Q@ Xo = B(xo, o).

© Cut edges: {(v1,x),---, Vi, xx)}

70
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Spanning Tree Algorithm (G, X, xp, R)

Assumption: X C B(x, R)

Q Sample p € [1,2]- Ruar.

9 XO = B(X07 rO)-

O Cut edgeS: {(ylaxl)a SRR (yk7Xk)}

© Run [MPX13] on G[X \ Xq]
Centers: xq, ..., Xk.
Xi shift: 5,‘ — dc;(Xo,X,').
d;i ~ Exp(O(== - R)).

log n




[BEGL24] Stochastic Embedding into Spanning Trees
Spanning Tree Algorithm (G, X, xp, R)

Assumption: X C B(x, R)

Q Sample p € [1,2]- Ruar.

9 XO = B(X07 rO)-

O Cut edgeS: {(ylaxl)a SRR (yk7Xk)}

© Run [MPX13] on G[X \ Xq]
Centers: xq, ..., Xk.
Xi shift: 5,‘ — dc;(Xo,X,').
d;i ~ Exp(O(== - R)).

log n

W.h.p. Vi,8; < eR



[BEGL24] Stochastic Embedding into Spanning Trees
Spanning Tree Algorithm (G, X, xp, R)

Assumption: X C B(x, R)

Q Sample p € [1,2]- Ruar.

9 XO = B(X07 rO)-

O Cut edgeS: {(ylaxl)a SRR (yk7Xk)}

© Run [MPX13] on G[X \ Xq]
Centers: xq, ..., Xk.
Xi shift: 5,‘ — dc;(Xo,X,').
d;i ~ Exp(O(== - R)).

log n

W.h.p. Vi,8; < eR



[BEGL24] Stochastic Embedding into Spanning Trees
Spanning Tree Algorithm (G, X, xp, R)

Assumption: X C B(x, R)

Q Sample p € [1,2]- Ruar.

9 XO = B(X07 rO)-

O Cut edgeS: {(ylaxl)a SRR (yk7Xk)}

© Run [MPX13] on G[X \ Xq]
Centers: xq, ..., Xk.
Xi shift: 5,‘ — dc;(Xo,X,').
d;i ~ Exp(O(== - R)).

log n

(o, 25) + dgxy) (@5, 0) < d (@, v) +€R

W.h.p. Vi,8; < eR



[BEGL24] Stochastic Embedding into Spanning Trees
Spanning Tree Algorithm (G, X, xp, R)

Assumption: X C B(x, R)

Q Sample p € [1,2]- Ruar.

9 XO = B(X07 rO)-

O Cut edgeS: {(ylaxl)a SRR (yk7Xk)}

© Run [MPX13] on G[X \ Xq]
Centers: xq, ..., Xk.
Xi shift: 5,‘ — dc;(Xo,X,').
d;i ~ Exp(O(== - R)).

log n

(o, 25) + dgxy) (25, 0) < d (@, v) +€R
< (14 2¢) - dg(xo,v)

W.h.p. Vi,8; < eR



[BEGL24] Stochastic Embedding into Spanning Trees
Spanning Tree Algorithm (G, X, xp, R)

Assumption: X C B(x, R)

Q Sample p € [1,2]- Ruar.

9 XO = B(X07 rO)-

O Cut edgeS: {(ylaxl)a SRR (yk7Xk)}

© Run [MPX13] on G[X \ Xq]
Centers: xq, ..., Xk.
Xi shift: 5,‘ — dc;(Xo,X,').
d;i ~ Exp(O(== - R)).

log n

© Recurse: T; = STA(G, X, x;, R})
Q T <« cut edges U{T:}5,.




[BEGL24] Stochastic Embedding into Spanning Trees
Spanning Tree Algorithm (G, X, xp, R)

Assumption: X C B(x, R)

Q Sample p € [1,2]- Ruar.

9 XO = B(X07 rO)-

O Cut edgeS: {(ylaxl)a SRR (yk7Xk)}

© Run [MPX13] on G[X \ Xq]
Centers: xq, ..., Xk.
Xi shift: 5,‘ — dc;(Xo,X,').
d;i ~ Exp(O(== - R)).

log n

© Recurse: T; = STA(G, X, x;, R})
Q T « cut edges J{T:}o,. de (o, w5) + dg ;) (x5, 0) < (14 2€) - dgxo, v)




[BEGL24] Stochastic Embedding into Spanning Trees
Spanning Tree Algorithm (G, X, xp, R)

Assumption: X C B(x, R)
Q Sample ry € [%, %] R u.a.r.
Q Xo = B(xo, o).
© Cut edges: {(y1,x1), -+, (Vi xx)}
© Run [MPX13] on G[X \ Xq]
Centers: xq, ..., Xk.
x; shift: 0; — dG(X07Xi)'
5 ~ Exp(© (55 - R))-
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[BEGL24] Stochastic Embedding into Spanning Trees
Spanning Tree Algorithm (G, X, xp, R)

Assumption: X C B(x, R)
Q Sample p € [1,2]- Ruar.
9 XO = B(X07 rO)-

© Cut edges: {(v1,x),---, Vi, xx)}
© Run [MPX13] on G[X \ Xq]
Centers: xq, ..., Xk.
Xi shift: 5,‘ — dc;(Xo,X,').
6 ~ Exp(© (557 - R))-

log n
@ Recurse: T; = STA(G, X;, x;, R;)
Q T « cut edges J{T:}o,. dg (20, 75) + dg(x;) (¥5,v) < (1+2€) - dg(wo,v)
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[BEGL24] Stochastic Embedding into Spanning Trees
Spanning Tree Algorithm (G, X, xp, R)

Assumption: X C B(x, R)

Q Sample p € [1,2]- Ruar.

9 XO = B(X07 rO)-

O Cut edgeS: {(ylaxl)a SRR (yk7Xk)}

© Run [MPX13] on G[X \ Xq]
Centers: xq, ..., Xk.
Xi shift: 5,‘ — dc;(Xo,X,').
d;i ~ Exp(O(== - R)).

log n
@ Recurse: T; = STA(G, X;, x;, R;)
Q T « cut edges | J{ T}, de(x0, %5) + dgx;) (25, v) < (14 2€) - (o, v)
Lemma 1: If u, v are separated dr(w0,v) < (1+26)908%) - (20, 0) < 2 dg(wo, v)

at scale R = dr(u,v) = O(R) For € = Oljgg,)



@ Sample rp € [3,2]- Ru.ar.
Q@ Xy = B(xo, o).
© Cut edges: {(v1,%),---, Vi, xx)}
© Run [MPX13] on G[X \ X;]
Centers: xq, ..., Xk
x; shift: &; — dg(xo, X;)-
dj ~ EXp(@(Io;n “R)).
@ Recurse: T; = STA(G, X;, x;, R;)
Q T <« cut edges U{T:}5,.
Lemma 1: If u, v are separated
at scale R = dr(u,v) = O(R)

Lemma 2:
Pr[Pr(v) # Pr(u)] >

For € = O

logn )



@ Sample rp € [3,2]- Ru.ar.
Q@ Xy = B(xo, o).
© Cut edges: {(v1,%),---, Vi, xx)}
© Run [MPX13] on G[X \ X;]
Centers: xq, ..., Xk
x; shift: &; — dg(xo, X;)-
dj ~ EXp(@(Io;n “R)).
@ Recurse: T; = STA(G, X;, x;, R;)
Q T <« cut edges U{T:}5,.
Lemma 1: If u, v are separated
at scale R = dr(u,v) = O(R)

Lemma 2:
Pr[Pr(v) # Pr(u)] >

For e = O(



@ Sample rp € [3,2]- Ru.ar.

Q@ Xy = B(xo, o).

© Cut edges: {(y1,x1)s -+, (Vi X) }
© Run [MPX13] on G[X \ Xo]

Centers: xq, ..., Xk
X shift: (5,‘ — dG(Xo,X,').
5 ~ Exp(©(1c5 - R)):

@ Recurse: T; = STA(G, X;, x;, R;)
Q T <« cut edges U{T:}5,.
Lemma 1: If u, v are separated
at scale R = dr(u,v) = O(R)

Lemma 2:
Pr[Pr(v) # Pr(u)] >log®n -

dG(u»V)
R

:ro o
Pr{Pp(v) = Pp(u)] > Pr[B(v,yR) C Py(v)]

logn

2 de(uw
> eV = ¢ 108 o

~ 1 — logZn - daluv)

For e = O( 1 )

logn




Lemma 1: If u, v are separated
at scale R = dr(u,v) = O(R)

Lemma 2:
Pr[Pr(v) # Pgr(u)] >log® n - w

Eldr(x, y)]

< Z 0(2) - Pr[Pi(x) # Pi(y)]

Iog U]

d - -
< Z 02y ) O(1og? m)  Pilrate) - Pt = Pl € Pt
>e 7 lojg’g _ 10g2 n~ﬁ7_3—d (uv)
= O(Iog n) . dx(X,Y) . %1*105; n.dg(u,v)

For € = O(1-1)

logn
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© Minor Free Graphs



Special Graph Families

Theorem ([FRTO04],[Bar04] Stochastic embedding into trees)

Every n-point metric space (X, d) embeds into distribution D over dominating trees
with expected distortion O(log n).
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Theorem ([FRTO04],[Bar04] Stochastic embedding into trees)

Every n-point metric space (X, d) embeds into distribution D over dominating trees
with expected distortion O(log n).

Tight!

Try special graph families!
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Special Graph Families

Special graph families:
e Planar.
@ Excluding a fixed minor.
@ Bounded treewidth.




Planar graphs into treewidth graphs

Theorem ([FRTO04], improving [Bartal 96+98])

Every n-point metric space (X, d) embeds into distribution D over trees with expected
distortion O(log n).

Tight!

Planar graphs into trees, could we do better?




Planar graphs into treewidth graphs

Theorem ([FRTO04], improving [Bartal 96+98])

Every n-point metric space (X, d) embeds into distribution D over trees with expected
distortion O(log n).

Tight!

Planar graphs into trees, could we do better? No!
[AKPWO5]: [FRTO04] is tight already for the n x n grid graph!




Planar graphs into treewidth graphs

Theorem ([FRTO04], improving [Bartal 96+98])

Every n-point metric space (X, d) embeds into distribution D over trees with expected
distortion O(log n).

Tight!

Planar graphs into trees, could we do better? No!
Perhaps try a richer target space?



Planar graphs into treewidth graphs

Theorem ([FRTO04], improving [Bartal 96+98])

Every n-point metric space (X, d) embeds into distribution D over trees with expected
distortion O(log n).

Tight!

Planar graphs into trees, could we do better? No!
Perhaps try a richer target space?

Planar graphs into low treewidth graphs, could we do better?



Planar graphs into treewidth graphs

Theorem ([FRTO04], improving [Bartal 96+98])

Every n-point metric space (X, d) embeds into distribution D over trees with expected
distortion O(log n).

Tight!

Planar graphs into trees, could we do better? No!
Perhaps try a richer target space?
Planar graphs into low treewidth graphs, could we do better? No!

Theorem ([Chakrabarti, Jaffe, Lee, Vincent 08] Stochastic Lower Bound)

Vt, 3 n-vertex planar graph G = (V, E, w) such that every stochastic embedding
into treewidth-t graphs incur distortion Q(log n).




Planar graphs into treewidth graphs

Theorem ([CJLV08] Stochastic Lower Bound)

Vt, 3 n-vertex planar graph G = (V, E, w) such that every stochastic embedding
into treewidth-t graphs incur distortion Q(log n).

Theorem ([Fox-Epstein, Klein, Schild 19], improving [Eisenstat, Klein,
Mathieu 14] Planar into treewidth)

Consider planar graph G with diameter D and parameter ¢ € (0,1), then G embeds
into treewidth poly (L) graph with additive distortion €D.




Planar graphs into treewidth graphs

Theorem ([CJLV08] Stochastic Lower Bound)

Vt, 3 n-vertex planar graph G = (V, E, w) such that every stochastic embedding
into treewidth-t graphs incur distortion Q(log n).

Theorem ([Fox-Epstein, Klein, Schild 19], improving [Eisenstat, Klein,
Mathieu 14] Planar into treewidth)
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Theorem ([FKS19] Planar into treewidth)

Consider planar graph G with diameter D and parameter ¢ € (0,1), then G embeds

into treewidth poly (L) graph with additive distortion €D. Deterministically!
D = max,,, dg(u, v)

f:G— H, tw(H) = poly(%) s.t. Vu,v,
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Planar graphs into treewidth graphs

Theorem ([FKS19] Planar into treewidth)

Consider planar graph G with diameter D and parameter ¢ € (0,1), then G embeds
into treewidth poly (L) graph with additive distortion €D. Deterministically!

D = max,,, dg(u, v)
f:G— H, tw(H) = poly(%) s.t. Vu,v,

dg(u, v) < dy(f(u), f(v)) < dg(u,v)+eD .

[F., Le 22]: Deterministic embedding with
additive distortion €D into treewidth O(¢~!(log log n)?) graph.

Applications to: PTAS for Vehicle routing,
EPTAS for metric p-dominating set, and metric p-isolated set.
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Minor-free graphs into treewidth graphs

Theorem ([FKS19] Planar into treewidth)

Consider planar graph G with diameter D and parameter ¢ € (0,1), then G embeds
into treewidth poly (L) graph with additive distortion €D.

What about minor-free graphs? No!

Theorem ([Cohen-Addad, F., Klein, Le 20] Minor lower bound)

3 n-vertex Kg-free graph G = (V, E, w) s.t. every classic embedding
into o(+/n)-treewidth graph incur additive distortion 2.




Minor-free graphs into treewidth graphs

Theorem ([FKS19] Planar into treewidth)

Consider planar graph G with diameter D and parameter ¢ € (0,1), then G embeds
into treewidth poly (L) graph with additive distortion €D.

What about minor-free graphs? No!

Theorem ([CFKL20] Minor lower bound)

3 n-vertex Kg-free graph G = (V, E, w) s.t. every classic embedding
into o(+/n)-treewidth graph incur additive distortion 2.

Maybe Stochastic?



Minor-free graphs into treewidth graphs

Theorem ([CFKL20] Minor lower bound)

3 n-vertex Kg-free graph G = (V, E, w) s.t. every classic embedding
into o(+/n)-treewidth graph incur additive distortion £.

Theorem ([F., Le 22] Minor stochastic embedding (improving over
[CFKL20]))
For € € (0,1), every n-point K,-free graph with diameter D,
stochastically embeds into distribution D over O,({%€96")°)_treewidth graphs
with expected additive distortion €D.
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Minor-free graphs into treewidth graphs

Theorem ([FL22] Minor stochastic embedding (improving over [CFKL20]))
For € € (0,1), every n-point K,-free graph with diameter D,
stochastically embeds into distribution D over O,({%€96")°)_treewidth graphs
with expected additive distortion €D.

Vu,v, and (f, H) € supp(D), dg(u, v) < du(f(u),f(v)), and

E(r,my~pldn(f(u), f(v))] < d(u,v) + €D .

Applications to: PTAS for Vehicle routing.

A version of this embedding (called Ramsey type and clan) been used to obtain QPTAS
for the p-dominating/isolated set problems.
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Theorem ([FL22] Minor stochastic embedding (improving over [CFKL20]))
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@ Remove dependency on n.

@ Improve the ginormous dependence on r (structure theorem).



Minor-free graphs into treewidth graphs

Theorem ([FL22] Minor stochastic embedding (improving over [CFKL20]))
For € € (0,1), every n-point K,-free graph with diameter D,
stochastically embeds into distribution D over O,({%€96")°)_treewidth graphs

with expected additive distortion €D.

Questions:
@ Remove dependency on n.

@ Improve the ginormous dependence on r (structure theorem).

@ For planar graphs we have treewidth min{poly(e™'), O(¢(log log n)?)}.
Can we get O(c1)?
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into treewidth-t graphs incur distortion Q(log n).
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Embedding into treewidth graphs with multiplicative distortion

Theorem ([CJLV08] Stochastic Lower Bound)

Vt, 3 n-vertex planar graph G = (V, E, w) such that every stochastic embedding
into treewidth-t graphs incur distortion Q(log n).

What if we allow t to depend on G?

Theorem ([Carroll, Goel 04] Stochastic Lower Bound 2)

Every stochastic embedding of planar graphs into treewidth-t graphs with constant
expected distortion requires t = Q(log n).




Embedding into treewidth graphs with multiplicative distortion

Theorem ([CJLVO8]: constant treewidth = Q(log n) expected distortion)

Vt, 3 n-vertex planar graph G = (V, E, w) such that every stochastic embedding
into treewidth-t graphs incur distortion Q(log n).

What if we allow t to depend on G?

Theorem ([CGO4]: constant expected distortion = Q(log n) treewidth)

Every stochastic embedding of planar graphs into treewidth-t graphs with constant
expected distortion requires t = Q(log n).




Embedding into treewidth graphs with multiplicative distortion

Theorem ([CJLVO8]: constant treewidth = Q(log n) expected distortion)

Vt, 3 n-vertex planar graph G = (V, E, w) such that every stochastic embedding
into treewidth-t graphs incur distortion Q(log n).

What if we allow t to depend on G?

Theorem ([CGO4]: constant expected distortion = Q(log n) treewidth)

Every stochastic embedding of planar graphs into treewidth-t graphs with constant
expected distortion requires t = Q(log n).

Theorem ([Cohen-Addad, Le, Pilipczuk, Pilipczuk 23])

Ve € (0,1), every n-point K,.-minor free graph embeds into distribution over graphs
with treewidth O,(¢7!') - polylog(n) with expected distortion 1 + e.
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Applications to: QPTAS for capacitated Vehicle routing

(unit demand, general capacities).
QPTAS for facility location.

QPTAS for capacitated k-Median.



Embedding into treewidth graphs with multiplicative distortion
Theorem ([CLPP23])

Ve € (0,1), every n-point K.-minor free graph embeds into distribution over graphs
with treewidth O,(e™') - polylog(n) with expected distortion 1 + e.

Applications to: QPTAS for capacitated Vehicle routing
(unit demand, general capacities).
QPTAS for facility location.

QPTAS for capacitated k-Median.
Theorem ([Chang, Cohen-Addad, Conroy, Le, Pilipczuk, Pilipczuk 25])

Ve € (0,1), every n-point planar graph embeds into distribution over graphs with
treewidth O(c¢™! - log® n) with expected distortion 1 + ¢.




Embedding into treewidth graphs with multiplicative distortion
Theorem ([CLPP23]) |

Ve € (0,1), every n-point K.-minor free graph embeds into distribution over graphs
with treewidth O,(e™') - polylog(n) with expected distortion 1 + e.

Theorem ([CCCLPP25]) |

Ve € (0,1), every n-point planar graph embeds into distribution over graphs with
treewidth O(e™! - log® n) with expected distortion 1 + ¢.

Conjecture [CCCLPP25] |
1 + ¢ expected distortion from planar graphs into treewidth O(¢~! - log n) graphs.
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Clan: embedding into a single tree with (worst case) distortion O(k) such that
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Ricke trees: embedding into trees with O(log n) expected congestion.

Ramsey trees: every metric contains a subset of n'~% points that can be
embedded into a tree with distortion O(k) (worst case).

Clan: embedding into a single tree with (worst case) distortion O(k) such that
every vertex has nk copies in expectation.

Scaling distortion: embedding such that Ve, at most ¢ - (;’) pairs have expected
distortion Q(log ).

Priority distortion: given ordering xi, X2, . . ., X,, embedding such that

Vi < j, E[dr(x;, x;)] = O(log i) - dx(x;, x;).

Dynamic: maintaining stochastic embedding into tree of a changing graph.
Distributed: sampling stochastic embedding in the CONGEST / LOCAL models.
Hop-constrained: embedding preserving the hop-distance d(Gh)(u, v).

Digraphs into DAGS.

More?
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Questions?’
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