
Outline of the talk

1 Introduction

2 Stochastic embedding into trees

3 Bartal 96 and Padded decompositions

4 Online Metric Embeddings

5 Spanning trees and MPX

6 Minor Free Graphs

Metric Embeddings into Trees
and its Various Spin-o�s

Arnold Filtser
Bar-Ilan University

Dagstuhl Seminar 25212: Metric Sketching and Dynamic Algorithms
for Geometric and Topological Graphs

May 19, 2025

Metric Embeddings

Embedding

(X , dX), (Y , dY) metric spaces. f : (X , dX)→ (Y , dY) is called an embedding.

f :

x

y

z

Metric Embeddings

Embedding

(X , dX), (Y , dY) metric spaces. f : (X , dX)→ (Y , dY) is called an embedding.

f :

x

y

z

Preserve (approxierly) properties of the original space:

Distances

Cuts, Flows

Commute time

E�ective resistance

Clustering statistics.

etc.

Metric Embeddings

Embedding

(X , dX), (Y , dY) metric spaces. f : (X , dX)→ (Y , dY) is called an embedding.

f :

x

y

z

f has distortion t if:

∀x , y ∈ X , dX (x , y) ≤ dY (f (x), f (y)) ≤ t · dX (x , y) .

Metric Embeddings

Embedding

(X , dX), (Y , dY) metric spaces. f : (X , dX)→ (Y , dY) is called an embedding.

f :

x

y

z

f has distortion t if:

∀x , y ∈ X , dX (x , y) ≤ dY (f (x), f (y)) ≤ t · dX (x , y) .

It is highly desirable that the target space Y will have simple structure.

Metric Embeddings

Embedding

(X , dX), (Y , dY) metric spaces. f : (X , dX)→ (Y , dY) is called an embedding.

f :

x

y

z

f has distortion t if:

∀x , y ∈ X , dX (x , y) ≤ dY (f (x), f (y)) ≤ t · dX (x , y) .

It is highly desirable that the target space Y will have simple structure.
So that we could run e�cient algorithms on it...

Metric Embeddings

Embedding

(X , dX), (Y , dY) metric spaces. f : (X , dX)→ (Y , dY) is called an embedding.

f :

x

y

z

Theorem ([Bourgain 85])

Every n-point metric (X , dX) is embeddable into Euclidean space (Rd , ∥ · ∥2)
with distortion O(log n).

Embedding

(X , dX), (Y , dY) metric spaces. f : (X , dX)→ (Y , dY) is called an embedding.

f :

x

y

z

Theorem ([Bourgain 85])

Every n-point metric (X , dX) is embeddable into Euclidean space (Rd , ∥ · ∥2)
with distortion O(log n).

Theorem ([Linial, London, Rabinovich 95])

[Bou85] is tight.

Theorem ([Bourgain 85])

Every n-point metric (X , dX) is embeddable into Euclidean space (Rd , ∥ · ∥2)
with distortion O(log n).

f :

x

y

z

Applications:

Approximation algorithms (e.g. sparsest cut, min graph bandwidth)

Parallel computation (e.g. SSSP in MPC)

Computational Biology (e.g. clustering and detecting protein seq.)

etc.

Theorem ([Rao 99])

Every n-point planar metric (X , dX) (or �xed minor free) is embeddable

into Euclidean space (Rd , ∥ · ∥2) with distortion O(
√
log n).

f :

x

y

z

Planar metric- the shortest path metric of a planar graph.

Theorem ([Rao 99])

Every n-point planar metric (X , dX) (or �xed minor free) is embeddable

into Euclidean space (Rd , ∥ · ∥2) with distortion O(
√
log n).

f :

x

y

z

Planar metric- the shortest path metric of a planar graph.

Theorem ([Newman, Rabinovich 03])

[Rao99] is tight.

Theorem ([Rao 99])

Every n-point planar metric (X , dX) (or �xed minor free) is embeddable

into Euclidean space (Rd , ∥ · ∥2) with distortion O(
√
log n).

f :

x

y

z

We can get the same result for ℓ1, but could we do better?

Theorem ([Rao 99])

Every n-point planar metric (X , dX) (or �xed minor free) is embeddable

into Euclidean space (Rd , ∥ · ∥2) with distortion O(
√
log n).

f :

x

y

z

We can get the same result for ℓ1, but could we do better?

GNRS conjecture [Gupta, Newman, Rabinovich, Sinclair 04]

Every �xed minor free graph can be embedded into ℓ1 with constant distortion.

Embedding

(X , dX), (Y , dY) metric spaces. f : (X , dX)→ (Y , dY) is called an embedding.

f :

Theorem ([Johnson, Lindenstrauss 84], Dimension Reduction)

X ⊂ (Rd , ∥ · ∥2) set of size n. Then X embeds into O(log n/ϵ2) dimensional Euclidean
space with distortion 1+ ϵ.

Embedding

(X , dX), (Y , dY) metric spaces. f : (X , dX)→ (Y , dY) is called an embedding.

f :

Theorem ([Johnson, Lindenstrauss 84], Dimension Reduction)

X ⊂ (Rd , ∥ · ∥2) set of size n. Then X embeds into O(log n/ϵ2) dimensional Euclidean
space with distortion 1+ ϵ.

Theorem ([Green Larsen, Nelson 17])

[JL84] is tight.

Theorem ([Johnson, Lindenstrauss 84], Dimension Reduction)

X ⊂ (Rd , ∥ · ∥2) set of size n. Then X embeds into O(log n/ϵ2) dimensional Euclidean
space with distortion 1+ ϵ.

f :

Applications:

Speeding up-computation

Clustering

Nearest Neighbor Search

Machine Learning

etc.

Outline of the talk

1 Introduction

2 Stochastic embedding into trees

3 Bartal 96 and Padded decompositions

4 Online Metric Embeddings

5 Spanning trees and MPX

6 Minor Free Graphs

Embedding into Trees
Tree is very simple and desirable target space.

Many NP-hard problems are easy on trees (using dynamic programming).

Embedding into Trees
Tree is very simple and desirable target space. v1

vj

vivi+1

v0vn−1

vj+1Embedding Cn requires distortion Ω(n).

Embedding into Trees
Tree is very simple and desirable target space. v1

vj

vivi+1

v0vn−1

vj+1Embedding Cn requires distortion Ω(n).

What if we delete a random edge ẽ?

Embedding into Trees
Tree is very simple and desirable target space. v1

vj

vivi+1

v0vn−1

vj+1Embedding Cn requires distortion Ω(n).

What if we delete a random edge ẽ?

ET∼D[dT (vi , vi+1)]

= Pr [ẽ = {vi , vi+1}] · (n − 1) + Pr [ẽ ̸= {vi , vi+1}] · 1

=
1

n
· (n − 1) +

n − 1

n
· 1 =

2(n − 1)

n
< 2 .

Embedding into Trees
Tree is very simple and desirable target space. v1

vj

vivi+1

v0vn−1

vj+1Embedding Cn requires distortion Ω(n).

What if we delete a random edge ẽ?

ET∼D[dT (vi , vi+1)] = Pr [ẽ = {vi , vi+1}] · (n − 1) + Pr [ẽ ̸= {vi , vi+1}] · 1

=
1

n
· (n − 1) +

n − 1

n
· 1 =

2(n − 1)

n
< 2 .

Embedding into Trees
Tree is very simple and desirable target space. v1

vj

vivi+1

v0vn−1

vj+1Embedding Cn requires distortion Ω(n).

What if we delete a random edge ẽ?

ET∼D[dT (vi , vi+1)] = Pr [ẽ = {vi , vi+1}] · (n − 1) + Pr [ẽ ̸= {vi , vi+1}] · 1

=
1

n
· (n − 1) +

n − 1

n
· 1 =

2(n − 1)

n
< 2 .

Embedding into Trees
Tree is very simple and desirable target space. v1

vj

vivi+1

v0vn−1

vj+1Embedding Cn requires distortion Ω(n).

What if we delete a random edge ẽ?

ET∼D[dT (vi , vi+1)] = Pr [ẽ = {vi , vi+1}] · (n − 1) + Pr [ẽ ̸= {vi , vi+1}] · 1

=
1

n
· (n − 1) +

n − 1

n
· 1

=
2(n − 1)

n
< 2 .

Embedding into Trees
Tree is very simple and desirable target space. v1

vj

vivi+1

v0vn−1

vj+1Embedding Cn requires distortion Ω(n).

What if we delete a random edge ẽ?

ET∼D[dT (vi , vi+1)] = Pr [ẽ = {vi , vi+1}] · (n − 1) + Pr [ẽ ̸= {vi , vi+1}] · 1

=
1

n
· (n − 1) +

n − 1

n
· 1 =

2(n − 1)

n
< 2 .

Embedding into Trees
v1

vj

vivi+1

v0vn−1

vj+1Embedding Cn requires distortion Ω(n).

What if we delete a random edge ẽ?

ET∼D[dT (vi , vi+1)] = Pr [ẽ = {vi , vi+1}] · (n − 1) + Pr [ẽ ̸= {vi , vi+1}] · 1

=
1

n
· (n − 1) +

n − 1

n
· 1 =

2(n − 1)

n
< 2 .

By triangle inequality and linearity of expectation

∀vi , vj , ET∼D[dT (vi , vj)] =

j−1∑
q=i

ET∼D[dT (vq, vq+1(mod n))] ≤ 2 · dCn(vi , vj) .

Stochastic Embedding into Trees

Theorem ([Fakcharoenphol, Rao, Talwar 04], improving [Bartal 96+98])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log n).

Stochastic Embedding into Trees

Theorem ([Fakcharoenphol, Rao, Talwar 04], improving [Bartal 96+98])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log n).

G = (V,E,w) T1 Ti Ts

v

u

v

u

v

u

Stochastic Embedding into Trees

Theorem ([Fakcharoenphol, Rao, Talwar 04], improving [Bartal 96+98])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log n).

G = (V,E,w) T1 Ti Ts

v

u

v

u

v

u

For every u, v ∈ X and T ∈ supp(D), dX (u, v) ≤ dT (f (u), f (v)).

Stochastic Embedding into Trees

Theorem ([Fakcharoenphol, Rao, Talwar 04], improving [Bartal 96+98])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log n).

G = (V,E,w) T1 Ti Ts

v

u

v

u

v

u

For every u, v ∈ X and T ∈ supp(D), dX (u, v) ≤ dT (f (u), f (v)).

For every u, v ∈ X ET∼D[dT (f (u), f (v))] ≤ O(log n) · dX (u, v).

Stochastic Embedding into Trees

Theorem ([Fakcharoenphol, Rao, Talwar 04], improving [Bartal 96+98])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log n).

G = (V,E,w) T1 Ti Ts

v

u

v

u

v

u

For every u, v ∈ X and T ∈ supp(D), dX (u, v) ≤ dT (f (u), f (v)).

For every u, v ∈ X ET∼D[dT (f (u), f (v))] ≤ O(log n) · dX (u, v).

[Alon, Karp, Peleg, West 95]: Tight!

Stochastic Embedding into Trees

Theorem ([Fakcharoenphol, Rao, Talwar 04], improving [Bartal 96+98])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log n).

[Alon, Karp, Peleg, West 95]: Tight!

In fact, tight already for the n × n grid graph!

Stochastic Embedding into Trees

Theorem ([Fakcharoenphol, Rao, Talwar 04], improving [Bartal 96+98])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log n).

G = (V,E,w) T1 Ti Ts

v

u

v

u

v

u

A useful hammer Transforms arbitrary metric into a tree!

Stochastic Embedding into Trees

Theorem ([Fakcharoenphol, Rao, Talwar 04], improving [Bartal 96+98])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log n).

A useful hammer Transforms arbitrary metric into a tree!

Applications:

Approximation Algorithms.

Online Algorithms.

Distributed Computing.

etc.

Outline of the talk

1 Introduction

2 Stochastic embedding into trees

3 Bartal 96 and Padded decompositions

4 Online Metric Embeddings

5 Spanning trees and MPX

6 Minor Free Graphs

We will begin our tour of metric embeddings into trees with the classics: [Bartal 96]

We will begin our tour of metric embeddings into trees with the classics: [Bartal 96]

This one is based on random partitions of metric spaces.

De�nition (Padded Decomposition)

Given a metric space (X , dX) (or a weight graph G = (V ,E ,w)).
Distribution D over partitions of G is (β,∆)-padded decomposition if:

For every cluster C ∈ P ∼ D, diam(C) ≤ ∆.

∀ small 0 ≤ γ, and z ∈ V , Pr[B(z , γ∆) ⊆ P(z)] ≥ e−βγ ≈ 1− βγ

G admits a β-padded decomposition scheme:
∀∆ > 0, G admits (β,∆)-padded decomposition.

De�nition (Padded Decomposition)

Given a metric space (X , dX) (or a weight graph G = (V ,E ,w)).
Distribution D over partitions of G is (β,∆)-padded decomposition if:

For every cluster C ∈ P ∼ D, diam(C) ≤ ∆.

∀ small 0 ≤ γ, and z ∈ V , Pr[B(z , γ∆) ⊆ P(z)] ≥ e−βγ ≈ 1− βγ

∆ ∆

∆∆∆

∆

∆

∆

∆

∆

∆

∆

∆

∆

∆

∆

G admits a β-padded decomposition scheme:
∀∆ > 0, G admits (β,∆)-padded decomposition.

De�nition (Padded Decomposition)

Given a metric space (X , dX) (or a weight graph G = (V ,E ,w)).
Distribution D over partitions of G is (β,∆)-padded decomposition if:

For every cluster C ∈ P ∼ D, diam(C) ≤ ∆.

∀ small 0 ≤ γ, and z ∈ V , Pr[B(z , γ∆) ⊆ P(z)] ≥ e−βγ ≈ 1− βγ

zγ∆ zγ∆ zγ∆

G admits a β-padded decomposition scheme:
∀∆ > 0, G admits (β,∆)-padded decomposition.

De�nition (Padded Decomposition)

Given a metric space (X , dX) (or a weight graph G = (V ,E ,w)).
Distribution D over partitions of G is (β,∆)-padded decomposition if:

For every cluster C ∈ P ∼ D, diam(C) ≤ ∆.

∀ small 0 ≤ γ, and z ∈ V , Pr[B(z , γ∆) ⊆ P(z)] ≥ e−βγ ≈ 1− βγ

γ′∆ z γ′∆ z γ′∆ z

G admits a β-padded decomposition scheme:
∀∆ > 0, G admits (β,∆)-padded decomposition.

De�nition (Padded Decomposition)

Given a metric space (X , dX) (or a weight graph G = (V ,E ,w)).
Distribution D over partitions of G is (β,∆)-padded decomposition if:

For every cluster C ∈ P ∼ D, diam(C) ≤ ∆.

∀ small 0 ≤ γ, and z ∈ V , Pr[B(z , γ∆) ⊆ P(z)] ≥ e−βγ ≈ 1− βγ

γ′∆ z γ′∆ z γ′∆ z

G admits a β-padded decomposition scheme:
∀∆ > 0, G admits (β,∆)-padded decomposition.

De�nition (Padded Decomposition)

Given a metric space (X , dX) (or a weight graph G = (V ,E ,w)).
Distribution D over partitions of G is (β,∆)-padded decomposition if:

For every cluster C ∈ P ∼ D, diam(C) ≤ ∆.

∀ small 0 ≤ γ, and z ∈ V , Pr[B(z , γ∆) ⊆ P(z)] ≥ e−βγ ≈ 1− βγ

γ′∆ z γ′∆ z γ′∆ z

Note: Pr[B(z , 1

β
·∆) ⊆ P(z)] ≥ Ω(1).

De�nition (Padded Decomposition)

Given a metric space (X , dX) (or a weight graph G = (V ,E ,w)).
Distribution D over partitions of G is (β,∆)-padded decomposition if:

For every cluster C ∈ P ∼ D, diam(C) ≤ ∆.

∀ small 0 ≤ γ, and z ∈ V , Pr[B(z , γ∆) ⊆ P(z)] ≥ e−βγ ≈ 1− βγ

Theorem ([Bartal 96])

Every n-point metric space admits an O(log n)-padded decomposition scheme.

De�nition (Padded Decomposition)

Given a metric space (X , dX) (or a weight graph G = (V ,E ,w)).
Distribution D over partitions of G is (β,∆)-padded decomposition if:

For every cluster C ∈ P ∼ D, diam(C) ≤ ∆.

∀ small 0 ≤ γ, and z ∈ V , Pr[B(z , γ∆) ⊆ P(z)] ≥ e−βγ ≈ 1− βγ

Theorem ([Bartal 96])

Every n-point metric space admits an O(log n)-padded decomposition scheme.

This is also tight! [Bartal 96]

Theorem ([Bartal 96])

Every n-point metric space (X , dX) admits an O(log n)-padded decomposition scheme.

Algorithm:

1 Arbitrarily order X : x1, x2, . . . , xn.
2 For i = 1 to n

1 Sample ri ∼ Exp(1).

2 Ci = B
(
xi , r̃i = ri · ∆

c·log n

)
\ ∪j<iCj

3 Return (C1,C2 . . . ,Cn).

x1

Theorem ([Bartal 96])

Every n-point metric space (X , dX) admits an O(log n)-padded decomposition scheme.

Algorithm:

1 Arbitrarily order X : x1, x2, . . . , xn.
2 For i = 1 to n

1 Sample ri ∼ Exp(1).

2 Ci = B
(
xi , r̃i = ri · ∆

c·log n

)
\ ∪j<iCj

3 Return (C1,C2 . . . ,Cn).

x1

Theorem ([Bartal 96])

Every n-point metric space (X , dX) admits an O(log n)-padded decomposition scheme.

Algorithm:

1 Arbitrarily order X : x1, x2, . . . , xn.
2 For i = 1 to n

1 Sample ri ∼ Exp(1).

2 Ci = B
(
xi , r̃i = ri · ∆

c·log n

)
\ ∪j<iCj

3 Return (C1,C2 . . . ,Cn).

x1

r̃1

Theorem ([Bartal 96])

Every n-point metric space (X , dX) admits an O(log n)-padded decomposition scheme.

Algorithm:

1 Arbitrarily order X : x1, x2, . . . , xn.
2 For i = 1 to n

1 Sample ri ∼ Exp(1).

2 Ci = B
(
xi , r̃i = ri · ∆

c·log n

)
\ ∪j<iCj

3 Return (C1,C2 . . . ,Cn).

x1

r̃1

x2

Theorem ([Bartal 96])

Every n-point metric space (X , dX) admits an O(log n)-padded decomposition scheme.

Algorithm:

1 Arbitrarily order X : x1, x2, . . . , xn.
2 For i = 1 to n

1 Sample ri ∼ Exp(1).

2 Ci = B
(
xi , r̃i = ri · ∆

c·log n

)
\ ∪j<iCj

3 Return (C1,C2 . . . ,Cn).

x1

r̃1

x2

r̃2

Theorem ([Bartal 96])

Every n-point metric space (X , dX) admits an O(log n)-padded decomposition scheme.

Algorithm:

1 Arbitrarily order X : x1, x2, . . . , xn.
2 For i = 1 to n

1 Sample ri ∼ Exp(1).

2 Ci = B
(
xi , r̃i = ri · ∆

c·log n

)
\ ∪j<iCj

3 Return (C1,C2 . . . ,Cn).

x1

r̃1

x2

r̃2

x3

Theorem ([Bartal 96])

Every n-point metric space (X , dX) admits an O(log n)-padded decomposition scheme.

Algorithm:

1 Arbitrarily order X : x1, x2, . . . , xn.
2 For i = 1 to n

1 Sample ri ∼ Exp(1).

2 Ci = B
(
xi , r̃i = ri · ∆

c·log n

)
\ ∪j<iCj

3 Return (C1,C2 . . . ,Cn).

x1

r̃1

x2

r̃2

x3 r̃3

Theorem ([Bartal 96])

Every n-point metric space (X , dX) admits an O(log n)-padded decomposition scheme.

Algorithm:

1 Arbitrarily order X : x1, x2, . . . , xn.
2 For i = 1 to n

1 Sample ri ∼ Exp(1).

2 Ci = B
(
xi , r̃i = ri · ∆

c·log n

)
\ ∪j<iCj

3 Return (C1,C2 . . . ,Cn).

x1

r̃1

x2

r̃2

x3 r̃3

x4

Theorem ([Bartal 96])

Every n-point metric space (X , dX) admits an O(log n)-padded decomposition scheme.

Algorithm:

1 Arbitrarily order X : x1, x2, . . . , xn.
2 For i = 1 to n

1 Sample ri ∼ Exp(1).

2 Ci = B
(
xi , r̃i = ri · ∆

c·log n

)
\ ∪j<iCj

3 Return (C1,C2 . . . ,Cn).

x1

r̃1

x2

r̃2

x3 r̃3

x4

r̃4

Theorem ([Bartal 96])

Every n-point metric space (X , dX) admits an O(log n)-padded decomposition scheme.

Algorithm:

1 Arbitrarily order X : x1, x2, . . . , xn.
2 For i = 1 to n

1 Sample ri ∼ Exp(1).

2 Ci = B
(
xi , r̃i = ri · ∆

c·log n

)
\ ∪j<iCj

3 Return (C1,C2 . . . ,Cn).

x1

r̃1

x2

r̃2

x3 r̃3

x5
x4

r̃4

Theorem ([Bartal 96])

Every n-point metric space (X , dX) admits an O(log n)-padded decomposition scheme.

Algorithm:

1 Arbitrarily order X : x1, x2, . . . , xn.
2 For i = 1 to n

1 Sample ri ∼ Exp(1).

2 Ci = B
(
xi , r̃i = ri · ∆

c·log n

)
\ ∪j<iCj

3 Return (C1,C2 . . . ,Cn).

r̃5

x1

r̃1

x2

r̃2

x3 r̃3

x5
x4

r̃4

Theorem ([Bartal 96])

Every n-point metric space (X , dX) admits an O(log n)-padded decomposition scheme.

Algorithm:

1 Arbitrarily order X : x1, x2, . . . , xn.
2 For i = 1 to n

1 Sample ri ∼ Exp(1).

2 Ci = B
(
xi , r̃i = ri · ∆

c·log n

)
\ ∪j<iCj

3 Return (C1,C2 . . . ,Cn).

W.h.p. ∀i , ri ≤ c
2
· log n r̃5

x1

r̃1

x2

r̃2

x3 r̃3

x5
x4

r̃4

Theorem ([Bartal 96])

Every n-point metric space (X , dX) admits an O(log n)-padded decomposition scheme.

Algorithm:

1 Arbitrarily order X : x1, x2, . . . , xn.
2 For i = 1 to n

1 Sample ri ∼ Exp(1).

2 Ci = B
(
xi , r̃i = ri · ∆

c·log n

)
\ ∪j<iCj

3 Return (C1,C2 . . . ,Cn).

W.h.p. ∀i , ri ≤ c
2
· log n

Thus all the sampled radii ≤ ∆
2
.

r̃5

x1

r̃1

x2

r̃2

x3 r̃3

x5
x4

r̃4

Theorem ([Bartal 96])

Every n-point metric space (X , dX) admits an O(log n)-padded decomposition scheme.

Algorithm:

1 Arbitrarily order X : x1, x2, . . . , xn.
2 For i = 1 to n

1 Sample ri ∼ Exp(1).

2 Ci = B
(
xi , r̃i = ri · ∆

c·log n

)
\ ∪j<iCj

3 Return (C1,C2 . . . ,Cn).

W.h.p. ∀i , ri ≤ c
2
· log n

Thus all the sampled radii ≤ ∆
2
.

⇒ all clusters have diameter ≤ ∆.

r̃5

x1

r̃1

x2

r̃2

x3 r̃3

x5
x4

r̃4

Theorem ([Bartal 96])

Every n-point metric space (X , dX) admits an O(log n)-padded decomposition scheme.

Algorithm:

1 Arbitrarily order X : x1, x2, . . . , xn.
2 For i = 1 to n

1 Sample ri ∼ Exp(1).

2 Ci = B
(
xi , r̃i = ri · ∆

c·log n

)
\ ∪j<iCj

3 Return (C1,C2 . . . ,Cn).

Pr [B(z , γ∆) ⊆ P(z)] ≥??

γ∆ z

Theorem ([Bartal 96])

Every n-point metric space (X , dX) admits an O(log n)-padded decomposition scheme.

Algorithm:

1 Arbitrarily order X : x1, x2, . . . , xn.
2 For i = 1 to n

1 Sample ri ∼ Exp(1).

2 Ci = B
(
xi , r̃i = ri · ∆

c·log n

)
\ ∪j<iCj

3 Return (C1,C2 . . . ,Cn).

Pr [B(z , γ∆) ⊆ P(z)] ≥??
i is the �rst s.t. Ci ∩ B(z , γ∆) ̸= ∅

xi

γ∆

r̃i

z
d(z, xi)

Theorem ([Bartal 96])

Every n-point metric space (X , dX) admits an O(log n)-padded decomposition scheme.

Algorithm:

1 Arbitrarily order X : x1, x2, . . . , xn.
2 For i = 1 to n

1 Sample ri ∼ Exp(1).

2 Ci = B
(
xi , r̃i = ri · ∆

c·log n

)
\ ∪j<iCj

3 Return (C1,C2 . . . ,Cn).

Pr [B(z , γ∆) ⊆ P(z)] ≥??
i is the �rst s.t. Ci ∩ B(z , γ∆) ̸= ∅

xi

r̃i

γ∆ z
d(z, xi)

Theorem ([Bartal 96])

Every n-point metric space (X , dX) admits an O(log n)-padded decomposition scheme.

Algorithm:

1 Arbitrarily order X : x1, x2, . . . , xn.
2 For i = 1 to n

1 Sample ri ∼ Exp(1).

2 Ci = B
(
xi , r̃i = ri · ∆

c·log n

)
\ ∪j<iCj

3 Return (C1,C2 . . . ,Cn).

Pr [B(z , γ∆) ⊆ P(z)] ≥??
i is the �rst s.t. Ci ∩ B(z , γ∆) ̸= ∅

xi

γ∆

r̃i

z
d(z, xi)

Theorem ([Bartal 96])

Every n-point metric space (X , dX) admits an O(log n)-padded decomposition scheme.

Algorithm:

1 Arbitrarily order X : x1, x2, . . . , xn.
2 For i = 1 to n

1 Sample ri ∼ Exp(1).

2 Ci = B
(
xi , r̃i = ri · ∆

c·log n

)
\ ∪j<iCj

3 Return (C1,C2 . . . ,Cn).

Pr [B(z , γ∆) ⊆ P(z)] ≥??
i is the �rst s.t. Ci ∩ B(z , γ∆) ̸= ∅

xi

γ∆

r̃i

z
d(z, xi)

By Memorylessness,

Pr [B(z , γ∆) ⊆ Ci | B(z , γ∆) ∩ Ci ̸= ∅] ≥ Pr [r̃i ≥ 2γ∆] = e−γ·2c log n

Theorem ([Bartal 96])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log2 n).

For simplicity, we will assume that all the pairwise distances are in [1,Φ = n10].

Theorem ([Bartal 96])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log2 n).

For simplicity, we will assume that all the pairwise distances are in [1,Φ = n10].

For every i ∈ [1, log Φ] sample an
(
O(log n), 2i

)
padded decomposition Pi .

Theorem ([Bartal 96])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log2 n).

For simplicity, we will assume that all the pairwise distances are in [1,Φ = n10].

For every i ∈ [1, log Φ] sample an
(
O(log n), 2i

)
padded decomposition Pi .

�Force� them into a laminar partition: P̃1, P̃2, . . . , P̃log Φ.
Here x , y clustered together in P̃i i� they are clustered together in Pi ,Pi+1, . . . ,Plog Φ.

Put a �tree structure� on top of the laminar partition.

Theorem ([Bartal 96])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log2 n).

For simplicity, we will assume that all the pairwise distances are in [1,Φ = n10].

For every i ∈ [1, log Φ] sample an
(
O(log n), 2i

)
padded decomposition Pi .

�Force� them into a laminar partition: P̃1, P̃2, . . . , P̃log Φ.
Here x , y clustered together in P̃i i� they are clustered together in Pi ,Pi+1, . . . ,Plog Φ.

Put a �tree structure� on top of the laminar partition.

Theorem ([Bartal 96])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log2 n).

For simplicity, we will assume that all the pairwise distances are in [1,Φ = n10].

For every i ∈ [1, log Φ] sample an
(
O(log n), 2i

)
padded decomposition Pi .

�Force� them into a laminar partition: P̃1, P̃2, . . . , P̃log Φ.
Here x , y clustered together in P̃i i� they are clustered together in Pi ,Pi+1, . . . ,Plog Φ.

Put a �tree structure� on top of the laminar partition.

Theorem ([Bartal 96])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log2 n).

For simplicity, we will assume that all the pairwise distances are in [1,Φ = n10].

For every i ∈ [1, log Φ] sample an
(
O(log n), 2i

)
padded decomposition Pi .

�Force� them into a laminar partition: P̃1, P̃2, . . . , P̃log Φ.
Here x , y clustered together in P̃i i� they are clustered together in Pi ,Pi+1, . . . ,Plog Φ.

Put a �tree structure� on top of the laminar partition.

Theorem ([Bartal 96])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log2 n).

For simplicity, we will assume that all the pairwise distances are in [1,Φ = n10].

For every i ∈ [1, log Φ] sample an
(
O(log n), 2i

)
padded decomposition Pi .

�Force� them into a laminar partition: P̃1, P̃2, . . . , P̃log Φ.
Here x , y clustered together in P̃i i� they are clustered together in Pi ,Pi+1, . . . ,Plog Φ.

Put a �tree structure� on top of the laminar partition.

Theorem ([Bartal 96])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log2 n).

For simplicity, we will assume that all the pairwise distances are in [1,Φ = n10].

For every i ∈ [1, log Φ] sample an
(
O(log n), 2i

)
padded decomposition Pi .

�Force� them into a laminar partition: P̃1, P̃2, . . . , P̃log Φ.
Here x , y clustered together in P̃i i� they are clustered together in Pi ,Pi+1, . . . ,Plog Φ.

Put a �tree structure� on top of the laminar partition.

Theorem ([Bartal 96])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log2 n).

For simplicity, we will assume that all the pairwise distances are in [1,Φ = n10].

For every i ∈ [1, log Φ] sample an
(
O(log n), 2i

)
padded decomposition Pi .

�Force� them into a laminar partition: P̃1, P̃2, . . . , P̃log Φ.
Here x , y clustered together in P̃i i� they are clustered together in Pi ,Pi+1, . . . ,Plog Φ.

Put a �tree structure� on top of the laminar partition.

Theorem ([Bartal 96])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log2 n).

For simplicity, we will assume that all the pairwise distances are in [1,Φ = n10].

For every i ∈ [1, log Φ] sample an
(
O(log n), 2i

)
padded decomposition Pi .

�Force� them into a laminar partition: P̃1, P̃2, . . . , P̃log Φ.
Here x , y clustered together in P̃i i� they are clustered together in Pi ,Pi+1, . . . ,Plog Φ.

Put a �tree structure� on top of the laminar partition.

Theorem ([Bartal 96])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log2 n).

For simplicity, we will assume that all the pairwise distances are in [1,Φ = n10].

For every i ∈ [1, log Φ] sample an
(
O(log n), 2i

)
padded decomposition Pi .

�Force� them into a laminar partition: P̃1, P̃2, . . . , P̃log Φ.
Here x , y clustered together in P̃i i� they are clustered together in Pi ,Pi+1, . . . ,Plog Φ.

Put a �tree structure� on top of the laminar partition.

Theorem ([Bartal 96])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log2 n).

For simplicity, we will assume that all the pairwise distances are in [1,Φ = n10].

For every i ∈ [1, log Φ] sample an
(
O(log n), 2i

)
padded decomposition Pi .

�Force� them into a laminar partition: P̃1, P̃2, . . . , P̃log Φ.
Here x , y clustered together in P̃i i� they are clustered together in Pi ,Pi+1, . . . ,Plog Φ.

Put a �tree structure� on top of the laminar partition.

Theorem ([Bartal 96])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log2 n).

For simplicity, we will assume that all the pairwise distances are in [1,Φ = n10].

For every i ∈ [1, log Φ] sample an
(
O(log n), 2i

)
padded decomposition Pi .

�Force� them into a laminar partition: P̃1, P̃2, . . . , P̃log Φ.
Here x , y clustered together in P̃i i� they are clustered together in Pi ,Pi+1, . . . ,Plog Φ.

Put a �tree structure� on top of the laminar partition.

Theorem ([Bartal 96])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log2 n).

For simplicity, we will assume that all the pairwise distances are in [1,Φ = n10].

For every i ∈ [1, log Φ] sample an
(
O(log n), 2i

)
padded decomposition Pi .

�Force� them into a laminar partition: P̃1, P̃2, . . . , P̃log Φ.
Here x , y clustered together in P̃i i� they are clustered together in Pi ,Pi+1, . . . ,Plog Φ.

Put a �tree structure� on top of the laminar partition.

Theorem ([Bartal 96])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log2 n).

For simplicity, we will assume that all the pairwise distances are in [1,Φ = n10].

For every i ∈ [1, log Φ] sample an
(
O(log n), 2i

)
padded decomposition Pi .

�Force� them into a laminar partition: P̃1, P̃2, . . . , P̃log Φ.
Here x , y clustered together in P̃i i� they are clustered together in Pi ,Pi+1, . . . ,Plog Φ.

Put a �tree structure� on top of the laminar partition.

Theorem ([Bartal 96])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log2 n).

For simplicity, we will assume that all the pairwise distances are in [1,Φ = n10].

For every i ∈ [1, log Φ] sample an
(
O(log n), 2i

)
padded decomposition Pi .

�Force� them into a laminar partition: P̃1, P̃2, . . . , P̃log Φ.
Here x , y clustered together in P̃i i� they are clustered together in Pi ,Pi+1, . . . ,Plog Φ.

Put a �tree structure� on top of the laminar partition.

Theorem ([Bartal 96])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log2 n).

For simplicity, we will assume that all the pairwise distances are in [1,Φ = n10].

For every i ∈ [1, log Φ] sample an
(
O(log n), 2i

)
padded decomposition Pi .

�Force� them into a laminar partition: P̃1, P̃2, . . . , P̃log Φ.
Here x , y clustered together in P̃i i� they are clustered together in Pi ,Pi+1, . . . ,Plog Φ.

Put a �tree structure� on top of the laminar partition.

Theorem ([Bartal 96])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log2 n).

For simplicity, we will assume that all the pairwise distances are in [1,Φ = n10].

For every i ∈ [1, log Φ] sample an
(
O(log n), 2i

)
padded decomposition Pi .

�Force� them into a laminar partition: P̃1, P̃2, . . . , P̃log Φ.
Here x , y clustered together in P̃i i� they are clustered together in Pi ,Pi+1, . . . ,Plog Φ.

Put a �tree structure� on top of the laminar partition.

Theorem ([Bartal 96])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log2 n).

For simplicity, we will assume that all the pairwise distances are in [1,Φ = n10].

For every i ∈ [1, log Φ] sample an
(
O(log n), 2i

)
padded decomposition Pi .

�Force� them into a laminar partition: P̃1, P̃2, . . . , P̃log Φ.
Here x , y clustered together in P̃i i� they are clustered together in Pi ,Pi+1, . . . ,Plog Φ.

Put a �tree structure� on top of the laminar partition.

Theorem ([Bartal 96])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log2 n).

For simplicity, we will assume that all the pairwise distances are in [1,Φ = n10].

For every i ∈ [1, log Φ] sample an
(
O(log n), 2i

)
padded decomposition Pi .

�Force� them into a laminar partition: P̃1, P̃2, . . . , P̃log Φ.
Here x , y clustered together in P̃i i� they are clustered together in Pi ,Pi+1, . . . ,Plog Φ.

Put a �tree structure� on top of the laminar partition.

Theorem ([Bartal 96])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log2 n).

For simplicity, we will assume that all the pairwise distances are in [1,Φ = n10].

For every i ∈ [1, log Φ] sample an
(
O(log n), 2i

)
padded decomposition Pi .

�Force� them into a laminar partition: P̃1, P̃2, . . . , P̃log Φ.
Here x , y clustered together in P̃i i� they are clustered together in Pi ,Pi+1, . . . ,Plog Φ.

Put a �tree structure� on top of the laminar partition.

Theorem ([Bartal 96])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log2 n).

For simplicity, we will assume that all the pairwise distances are in [1,Φ = n10].

For every i ∈ [1, log Φ] sample an
(
O(log n), 2i

)
padded decomposition Pi .

�Force� them into a laminar partition: P̃1, P̃2, . . . , P̃log Φ.
Here x , y clustered together in P̃i i� they are clustered together in Pi ,Pi+1, . . . ,Plog Φ.

Put a �tree structure� on top of the laminar partition.

�Force� them into a laminar partition: P̃1, P̃2, . . . , P̃log Φ.
Here x , y clustered together in P̃i i� they are clustered together in Pi ,Pi+1, . . . ,Plog Φ.

Put a �tree structure� on top of the laminar partition.

The weight of the edges between the P̃i−1 representatives to their respective P̃i

representatives will be 2i .

�Force� them into a laminar partition: P̃1, P̃2, . . . , P̃log Φ.
Here x , y clustered together in P̃i i� they are clustered together in Pi ,Pi+1, . . . ,Plog Φ.

Put a �tree structure� on top of the laminar partition.

The weight of the edges between the P̃i−1 representatives to their respective P̃i

representatives will be 2i .

Observation 1: For every x , y ∈ X , dX (x , y) ≤ dT (x , y)

�Force� them into a laminar partition: P̃1, P̃2, . . . , P̃log Φ.
Here x , y clustered together in P̃i i� they are clustered together in Pi ,Pi+1, . . . ,Plog Φ.

Put a �tree structure� on top of the laminar partition.

The weight of the edges between the P̃i−1 representatives to their respective P̃i

representatives will be 2i .

Observation 1: For every x , y ∈ X , dX (x , y) ≤ dT (x , y)

Observation 2: If Pi(x) = Pi(y), then dT (x , y) ≤ O(2i)

�Force� them into a laminar partition: P̃1, P̃2, . . . , P̃log Φ.
Here x , y clustered together in P̃i i� they are clustered together in Pi ,Pi+1, . . . ,Plog Φ.

Put a �tree structure� on top of the laminar partition.

Observation 1: For every x , y ∈ X , dX (x , y) ≤ dT (x , y)

Observation 2: If Pi(x) = Pi(y), then dT (x , y) ≤ O(2i)

dT (x , y) = O(2ix,y) where ix ,y is the maximum index such that Pi(x) ̸= Pi(y).

For every i ∈ [1, log Φ] sample an
(
O(log n), 2i

)
padded decomposition Pi .

Observation 1: For every x , y ∈ X , dX (x , y) ≤ dT (x , y)

Observation 2: If Pi(x) = Pi(y), then dT (x , y) ≤ O(2i)

dT (x , y) = O(2ix,y) where ix ,y is the maximum index such that Pi(x) ̸= Pi(y).

E[dT (x , y)] ≤
log Φ∑
i=0

O(2i) · Pr [Pi(x) ̸= Pi(y)]

≤
log Φ∑
i=0

O(2i) · dX (x , y)
2i

· O(log n)

= O(log2 n) · dX (x , y) .

Theorem ([Bartal 96])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log2 n).

For every i ∈ [1, log Φ] sample an
(
O(log n), 2i

)
padded decomposition Pi .

Observation 1: For every x , y ∈ X , dX (x , y) ≤ dT (x , y)

Observation 2: If Pi(x) = Pi(y), then dT (x , y) ≤ O(2i)

dT (x , y) = O(2ix,y) where ix ,y is the maximum index such that Pi(x) ̸= Pi(y).

E[dT (x , y)] ≤
log Φ∑
i=0

O(2i) · Pr [Pi(x) ̸= Pi(y)]

≤
log Φ∑
i=0

O(2i) · dX (x , y)
2i

· O(log n)

= O(log2 n) · dX (x , y) .

Theorem ([Bartal 96])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log2 n).

For every i ∈ [1, log Φ] sample an
(
O(log n), 2i

)
padded decomposition Pi .

Observation 1: For every x , y ∈ X , dX (x , y) ≤ dT (x , y)

Observation 2: If Pi(x) = Pi(y), then dT (x , y) ≤ O(2i)

dT (x , y) = O(2ix,y) where ix ,y is the maximum index such that Pi(x) ̸= Pi(y).

E[dT (x , y)] ≤
log Φ∑
i=0

O(2i) · Pr [Pi(x) ̸= Pi(y)]

≤
log Φ∑
i=0

O(2i) · dX (x , y)
2i

· O(log n)

= O(log2 n) · dX (x , y) .

Theorem ([Bartal 96])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log2 n).

For every i ∈ [1, log Φ] sample an
(
O(log n), 2i

)
padded decomposition Pi .

Observation 1: For every x , y ∈ X , dX (x , y) ≤ dT (x , y)

Observation 2: If Pi(x) = Pi(y), then dT (x , y) ≤ O(2i)

dT (x , y) = O(2ix,y) where ix ,y is the maximum index such that Pi(x) ̸= Pi(y).

E[dT (x , y)] ≤
log Φ∑
i=0

O(2i) · Pr [Pi(x) ̸= Pi(y)]

≤
log Φ∑
i=0

O(2i) · dX (x , y)
2i

· O(log n)

= O(log2 n) · dX (x , y) .

Theorem ([Bartal 96])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log2 n).

Theorem ([Bartal 96])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log2 n).

Theorem ([Bartal 96])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log2 n).

Theorem ([Fakcharoenphol, Rao, Talwar 04] , [Bartal 04])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log n).

Theorem ([Bartal 96])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log2 n).

Theorem ([Fakcharoenphol, Rao, Talwar 04] , [Bartal 04])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log n).

The improvement is achieved by sampling the padded decomposition in various levels in
a correlated fashion.

Theorem ([Bartal 96])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log2 n).

Theorem ([Fakcharoenphol, Rao, Talwar 04] , [Bartal 04])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log n).

The improvement is achieved by sampling the padded decomposition in various levels in
a correlated fashion.

Speci�cally, the probability to cut x , y at scale ∆ is

≈ dX (x , y)

∆
· log |B(x , c · 2

i)|
|B(x , 2i/c)|

for some constant c , instead of ≈ dX (x ,y)
∆
· log n. Then the sum �telescopes�.

Outline of the talk

1 Introduction

2 Stochastic embedding into trees

3 Bartal 96 and Padded decompositions

4 Online Metric Embeddings

5 Spanning trees and MPX

6 Minor Free Graphs

Online Metric Embeddings

Input: sequence of metric points arriving in an online fashion: x1, x2, . . . , xi ,

Online Metric Embeddings

Input: sequence of metric points arriving in an online fashion: x1, x2, . . . , xi ,

When receiving xi , we can also see dX (x1, xi), dX (x2, xi), . . . , dX (xi−1, xi).

Online Metric Embeddings

Input: sequence of metric points arriving in an online fashion: x1, x2, . . . , xi ,

When receiving xi , we can also see dX (x1, xi), dX (x2, xi), . . . , dX (xi−1, xi).

For every point xi we have to assign a vector v⃗i ∈ Rd .

Online Metric Embeddings

Input: sequence of metric points arriving in an online fashion: x1, x2, . . . , xi ,

When receiving xi , we can also see dX (x1, xi), dX (x2, xi), . . . , dX (xi−1, xi).

For every point xi we have to assign a vector v⃗i ∈ Rd .

That is we embed f (xi) = v⃗i . Once v⃗i is �xed, impossible to change!

Online Metric Embeddings

Input: sequence of metric points arriving in an online fashion: x1, x2, . . . , xi ,

When receiving xi , we can also see dX (x1, xi), dX (x2, xi), . . . , dX (xi−1, xi).

For every point xi we have to assign a vector v⃗i ∈ Rd .

That is we embed f (xi) = v⃗i . Once v⃗i is �xed, impossible to change!

Goal: Find a way to embed with small distortion.

Input: sequence of metric points arriving in an online fashion: x1, x2, . . . , xi ,

When receiving xi , we can also see dX (x1, xi), dX (x2, xi), . . . , dX (xi−1, xi).

For every point xi we have to assign a vector v⃗i ∈ Rd .

That is we embed f (xi) = v⃗i . Once v⃗i is �xed, impossible to change!

Goal: Find a way to embed with small distortion.

Observation: [Bartal 96] padded decomposition can work in an online fashion! (as the
order is arbitrary)!

r̃5
x1r̃1

x2
r̃2

x3

r̃3 x5

x4
r̃4

Input: sequence of metric points arriving in an online fashion: x1, x2, . . . , xi ,

When receiving xi , we can also see dX (x1, xi), dX (x2, xi), . . . , dX (xi−1, xi).

For every point xi we have to assign a vector v⃗i ∈ Rd .

That is we embed f (xi) = v⃗i . Once v⃗i is �xed, impossible to change!

Goal: Find a way to embed with small distortion.

Observation: [Bartal 96] padded decomposition can work in an online fashion! (as the
order is arbitrary)!

Theorem ([Indyk, Magen, Sidiropoulos, Zouzias 10])

Given an n-point metric space in an online fashion with aspect ratio Φ, there is a
stochastic online metric embedding into trees with expected distortion

O(log Φ · log n).

Aspect ratio (a.k.a. spread) Φ =
maxx,y∈X dX (x ,y)

min x ,y∈XdX (x ,y)

Input: sequence of metric points arriving in an online fashion: x1, x2, . . . , xi ,

When receiving xi , we can also see dX (x1, xi), dX (x2, xi), . . . , dX (xi−1, xi).

For every point xi we have to assign a vector v⃗i ∈ Rd .

That is we embed f (xi) = v⃗i . Once v⃗i is �xed, impossible to change!

Goal: Find a way to embed with small distortion.

Observation: [Bartal 96] padded decomposition can work in an online fashion! (as the
order is arbitrary)!

Theorem ([Indyk, Magen, Sidiropoulos, Zouzias 10])

Given an n-point metric space in an online fashion with aspect ratio Φ, there is a
stochastic online metric embedding into trees with expected distortion

O(log Φ · log n).

There is an Ω(log Φ · log n) lower bound [Bartal, Fandina, Umboh 20].

Theorem ([Indyk, Magen, Sidiropoulos, Zouzias 10])

Given an n-point metric space in an online fashion with aspect ratio Φ, there is a
stochastic online metric embedding into trees with expected distortion

O(log Φ · log n).

One can also use padded decompositions to embed into ℓ2 (give each partition a
di�erent coordinate, repeat many times over all scales).

Theorem ([Indyk, Magen, Sidiropoulos, Zouzias 10])

Given an n-point metric space in an online fashion with aspect ratio Φ, there is a
stochastic online metric embedding into trees with expected distortion

O(log Φ · log n).

One can also use padded decompositions to embed into ℓ2 (give each partition a
di�erent coordinate, repeat many times over all scales).

Theorem ([Indyk, Magen, Sidiropoulos, Zouzias 10])

Given an n-point metric space in an online fashion with aspect ratio Φ, there is an
online metric embedding into ℓ2 that w.h.p. has distortion O(

√
logΦ · log n).

Theorem ([Indyk, Magen, Sidiropoulos, Zouzias 10])

Given an n-point metric space in an online fashion with aspect ratio Φ, there is a
stochastic online metric embedding into trees with expected distortion

O(log Φ · log n).

Theorem ([Indyk, Magen, Sidiropoulos, Zouzias 10])

Given an n-point metric space in an online fashion with aspect ratio Φ, there is an
online metric embedding into ℓ2 that w.h.p. has distortion O(

√
logΦ · log n).

However, this works only against oblivious adversary (i.e. the input is �xed in advance).

Theorem ([Indyk, Magen, Sidiropoulos, Zouzias 10])

Given an n-point metric space in an online fashion with aspect ratio Φ, there is a
stochastic online metric embedding into trees with expected distortion

O(log Φ · log n).

Theorem ([Indyk, Magen, Sidiropoulos, Zouzias 10])

Given an n-point metric space in an online fashion with aspect ratio Φ, there is an
online metric embedding into ℓ2 that w.h.p. has distortion O(

√
logΦ · log n).

However, this works only against oblivious adversary (i.e. the input is �xed in advance).

How can we cope with adaptive adversary?

Theorem ([Indyk, Magen, Sidiropoulos, Zouzias 10])

Given an n-point metric space in an online fashion with aspect ratio Φ, there is an
online metric embedding into ℓ2 that w.h.p. has distortion O(

√
logΦ · log n).

However, this works only against oblivious adversary (i.e. the input is �xed in advance).

How can we cope with adaptive adversary?

Theorem ([Bhore, F., Tóth 24])

Given an n-point metric space in an online fashion with aspect ratio Φ, there is an
online deterministic metric embedding into ℓ2 with distortion O(

√
log Φ · log n).

Theorem ([Indyk, Magen, Sidiropoulos, Zouzias 10])

Given an n-point metric space in an online fashion with aspect ratio Φ, there is an
online metric embedding into ℓ2 that w.h.p. has distortion O(

√
logΦ · log n).

However, this works only against oblivious adversary (i.e. the input is �xed in advance).

How can we cope with adaptive adversary?

Theorem ([Bhore, F., Tóth 24])

Given an n-point metric space in an online fashion with aspect ratio Φ, there is an
online deterministic metric embedding into ℓ2 with distortion O(

√
log Φ · log n).

If the metric space has doubling dimension ddim, then we can get distortion
O(ddim ·

√
log Φ).

Theorem ([Indyk, Magen, Sidiropoulos, Zouzias 10])

Given an n-point metric space in an online fashion with aspect ratio Φ, there is an
online metric embedding into ℓ2 that w.h.p. has distortion O(

√
logΦ · log n).

However, this works only against oblivious adversary (i.e. the input is �xed in advance).

How can we cope with adaptive adversary?

Theorem ([Bhore, F., Tóth 24])

Given an n-point metric space in an online fashion with aspect ratio Φ, there is an
online deterministic metric embedding into ℓ2 with distortion O(

√
log Φ · log n).

If the metric space has doubling dimension ddim, then we can get distortion
O(ddim ·

√
log Φ).

Nothing should be known in advance (n,Φ, ddim).

Theorem ([Indyk, Magen, Sidiropoulos, Zouzias 10])

Given an n-point metric space in an online fashion with aspect ratio Φ, there is an
online metric embedding into ℓ2 that w.h.p. has distortion O(

√
logΦ · log n).

However, this works only against oblivious adversary (i.e. the input is �xed in advance).

How can we cope with adaptive adversary?

Theorem ([Bhore, F., Tóth 24])

Given an n-point metric space in an online fashion with aspect ratio Φ, there is an
online deterministic metric embedding into ℓ2 with distortion O(

√
log Φ · log n).

If the metric space has doubling dimension ddim, then we can get distortion
O(ddim ·

√
log Φ).

Nothing should be known in advance (n,Φ, ddim).

There is an Ω(
√
log Φ) L.B. over a planar graph with constant ddim!

Theorem ([Indyk, Magen, Sidiropoulos, Zouzias 10])

Given an n-point metric space in an online fashion with aspect ratio Φ, there is an
online metric embedding into ℓ2 that w.h.p. has distortion O(

√
logΦ · log n).

However, this works only against oblivious adversary (i.e. the input is �xed in advance).

How can we cope with adaptive adversary?

Theorem ([Bhore, F., Tóth 24])

Given an n-point metric space in an online fashion with aspect ratio Φ, there is an
online deterministic metric embedding into ℓ2 with distortion O(

√
log Φ · log n).

One can also get an upper bound of Õ(
√
n) independent of Φ.

Theorem ([Indyk, Magen, Sidiropoulos, Zouzias 10])

Given an n-point metric space in an online fashion with aspect ratio Φ, there is an
online metric embedding into ℓ2 that w.h.p. has distortion O(

√
logΦ · log n).

However, this works only against oblivious adversary (i.e. the input is �xed in advance).

How can we cope with adaptive adversary?

Theorem ([Bhore, F., Tóth 24])

Given an n-point metric space in an online fashion with aspect ratio Φ, there is an
online deterministic metric embedding into ℓ2 with distortion O(

√
log Φ · log n).

One can also get an upper bound of Õ(
√
n) independent of Φ.

[Newman Rabinovich 20]: Ω(
√
n) lower bound.

Theorem ([Bhore, F., Tóth 24])

Given an n-point metric space in an online fashion with aspect ratio Φ, there is an
online deterministic metric embedding into ℓ2 with distortion O(

√
log Φ · log n).

Basic idea: The randomness in the algorithm comes from sampling the radii in the
decompositions ri ∼ Exp(1).

Theorem ([Bhore, F., Tóth 24])

Given an n-point metric space in an online fashion with aspect ratio Φ, there is an
online deterministic metric embedding into ℓ2 with distortion O(

√
log Φ · log n).

Basic idea: The randomness in the algorithm comes from sampling the radii in the
decompositions ri ∼ Exp(1).

Using the properties of padded decomposition, and considering all possible scales:
E
[
∥v⃗i − v⃗j∥2

]
= O(

√
log Φ · log n) · dX (xi , xj).

Theorem ([Bhore, F., Tóth 24])

Given an n-point metric space in an online fashion with aspect ratio Φ, there is an
online deterministic metric embedding into ℓ2 with distortion O(

√
log Φ · log n).

Basic idea: The randomness in the algorithm comes from sampling the radii in the
decompositions ri ∼ Exp(1).

Using the properties of padded decomposition, and considering all possible scales:
E
[
∥v⃗i − v⃗j∥2

]
= O(

√
log Φ · log n) · dX (xi , xj).

For xi , the embedding is a function from r1, . . . , ri to ℓ2: fi(r1, . . . , ri) = v⃗i .

Theorem ([Bhore, F., Tóth 24])

Given an n-point metric space in an online fashion with aspect ratio Φ, there is an
online deterministic metric embedding into ℓ2 with distortion O(

√
log Φ · log n).

Basic idea: The randomness in the algorithm comes from sampling the radii in the
decompositions ri ∼ Exp(1).

Using the properties of padded decomposition, and considering all possible scales:
E
[
∥v⃗i − v⃗j∥2

]
= O(

√
log Φ · log n) · dX (xi , xj).

For xi , the embedding is a function from r1, . . . , ri to ℓ2: fi(r1, . . . , ri) = v⃗i .

E
[
∥v⃗i − v⃗j∥22

]
=

∫
R=(r1,r2,...)

∥fi(R)− fj(R)∥22 dR

= ∥fi − fj∥22

Theorem ([Bhore, F., Tóth 24])

Given an n-point metric space in an online fashion with aspect ratio Φ, there is an
online deterministic metric embedding into ℓ2 with distortion O(

√
log Φ · log n).

Basic idea: The randomness in the algorithm comes from sampling the radii in the
decompositions ri ∼ Exp(1).

Using the properties of padded decomposition, and considering all possible scales:
E
[
∥v⃗i − v⃗j∥2

]
= O(

√
log Φ · log n) · dX (xi , xj).

For xi , the embedding is a function from r1, . . . , ri to ℓ2: fi(r1, . . . , ri) = v⃗i .

E
[
∥v⃗i − v⃗j∥22

]
=

∫
R=(r1,r2,...)

∥fi(R)− fj(R)∥22 dR = ∥fi − fj∥22

f1, f2, . . . , fi , . . . live in the the function space L2 and de�ned deterministically!

Theorem ([Bhore, F., Tóth 24])

Given an n-point metric space in an online fashion with aspect ratio Φ, there is an
online deterministic metric embedding into ℓ2 with distortion O(

√
log Φ · log n).

E
[
∥v⃗i − v⃗j∥22

]
=

∫
R=(r1,r2,...)

∥fi(R)− fj(R)∥22 dR = ∥fi − fj∥22

f1, f2, . . . , fi , . . . live in the the function space L2 and de�ned deterministically!

One can compute vectors u⃗1, u⃗2, . . . , u⃗i , · · · ∈ ℓ2 such that

∀i , j , ∥u⃗i − u⃗j∥2 = ∥fi − fj∥2 .

Theorem ([Bhore, F., Tóth 24])

Given an n-point metric space in an online fashion with aspect ratio Φ, there is an
online deterministic metric embedding into ℓ2 with distortion O(

√
log Φ · log n).

E
[
∥v⃗i − v⃗j∥22

]
=

∫
R=(r1,r2,...)

∥fi(R)− fj(R)∥22 dR = ∥fi − fj∥22

f1, f2, . . . , fi , . . . live in the the function space L2 and de�ned deterministically!

One can compute vectors u⃗1, u⃗2, . . . , u⃗i , · · · ∈ ℓ2 such that

∀i , j , ∥u⃗i − u⃗j∥2 = ∥fi − fj∥2 .

This can also be done in an online fashion. Thus we obtain a deterministic embedding!

Theorem ([Bhore, F., Tóth 24])

Given an n-point metric space in an online fashion with aspect ratio Φ, there is an
online deterministic metric embedding into ℓ2 with distortion O(

√
log Φ · log n).

Caveat: we require linear dimension. u⃗n ∈ Rn.

Theorem ([Bhore, F., Tóth 24])

Given an n-point metric space in an online fashion with aspect ratio Φ, there is an
online deterministic metric embedding into ℓ2 with distortion O(

√
log Φ · log n).

Caveat: we require linear dimension. u⃗n ∈ Rn.

It is impossible to use [Johnson, Lindenstrauss 84].

Theorem ([Bhore, F., Tóth 24])

Given an n-point metric space in an online fashion with aspect ratio Φ, there is an
online deterministic metric embedding into ℓ2 with distortion O(

√
log Φ · log n).

Caveat: we require linear dimension. u⃗n ∈ Rn.

It is impossible to use [Johnson, Lindenstrauss 84].

Question

Fix d . Find a deterministic online embedding into Rd with small distortion.

Theorem ([Bhore, F., Tóth 24])

Given an n-point metric space in an online fashion with aspect ratio Φ, there is an
online deterministic metric embedding into ℓ2 with distortion O(

√
log Φ · log n).

Caveat: we require linear dimension. u⃗n ∈ Rn.

It is impossible to use [Johnson, Lindenstrauss 84].

Question

Fix d . Find a deterministic online embedding into Rd with small distortion.

[BFT24]: Õ(
√
n) upper bound with linear dimension.

Theorem ([Bhore, F., Tóth 24])

Given an n-point metric space in an online fashion with aspect ratio Φ, there is an
online deterministic metric embedding into ℓ2 with distortion O(

√
log Φ · log n).

Caveat: we require linear dimension. u⃗n ∈ Rn.

It is impossible to use [Johnson, Lindenstrauss 84].

Question

Fix d . Find a deterministic online embedding into Rd with small distortion.

[BFT24]: Õ(
√
n) upper bound with linear dimension.

[Newman Rabinovich 20]: Online embedding into the line R:
▶ Upper bound: O(n · 6n)
▶ Lower bound: 2

n
2

Theorem ([Bhore, F., Tóth 24])

Given an n-point metric space in an online fashion with aspect ratio Φ, there is an
online deterministic metric embedding into ℓ2 with distortion O(

√
log Φ · log n).

Caveat: we require linear dimension. u⃗n ∈ Rn.

It is impossible to use [Johnson, Lindenstrauss 84].

Question

Fix d . Find a deterministic online embedding into Rd with small distortion.

[BFT24]: Õ(
√
n) upper bound with linear dimension.

[Newman Rabinovich 20]: Online embedding into the line R:
▶ Upper bound: O(n · 6n)
▶ Lower bound: 2

n
2

The question is wide open for d = 2.

Theorem ([Bhore, F., Tóth 24])

Given an n-point metric space in an online fashion with aspect ratio Φ, there is an
online deterministic metric embedding into ℓ2 with distortion O(

√
log Φ · log n).

Question

Fix d . Find a deterministic online embedding into Rd with small distortion.

[BFT24]: Õ(
√
n) upper bound with linear dimension.

[Newman Rabinovich 20]: Online embedding into the line R:
▶ Upper bound: O(n · 6n)
▶ Lower bound: 2

n
2

The question is wide open for d = 2.

Could we get deterministic distortion poly(n) for constant d?

Online Padded Decomposition

De�nition (Padded Decomposition)

Given a metric space (X , dX) (or a weight graph G = (V ,E ,w)).
Distribution D over partitions of G is (β,∆)-padded decomposition if:

Every cluster C ∈ P ∼ D is ∆-bounded.

For every small 0 ≤ γ, and z ∈ V , Pr[B(z , γ∆) ⊆ P(z)] ≥ e−βγ .

[Bartal 96]: ∀ n-point metric space admits an O(log n)-padded decomposition scheme.

Online Padded Decomposition

[Bartal 96]: ∀ n-point metric space admits an O(log n)-padded decomposition scheme.

r̃5

x1

r̃1

x2

r̃2

x3 r̃3

x5
x4

r̃4

[Bartal 96] can be executed in an online fashion.

Online Padded Decomposition

[Bartal 96]: ∀ n-point metric space admits an O(log n)-padded decomposition scheme.

[Bartal 96] can be executed in an online fashion.

[Klein, Plotkin, Rao 93]: The shortest path metric of every planar graph admits an
O(1)-padded decomposition scheme.

Online Padded Decomposition

[Bartal 96]: ∀ n-point metric space admits an O(log n)-padded decomposition scheme.

[Bartal 96] can be executed in an online fashion.

[Klein, Plotkin, Rao 93]: The shortest path metric of every planar graph admits an
O(1)-padded decomposition scheme.

Question
Input: metric points in an online fashion from the shortest path metric of a planar
graph. Goal: Sample from an O(1)-padded decomposition scheme.

Crucially: The planar graph is unknown!

Online Padded Decomposition

[Klein, Plotkin, Rao 93]: The shortest path metric of every planar graph admits an
O(1)-padded decomposition scheme.

Question
Input: metric points in an online fashion from the shortest path metric of a planar
graph. Goal: Sample from an O(1)-padded decomposition scheme.

Online Padded Decomposition

[Klein, Plotkin, Rao 93]: The shortest path metric of every planar graph admits an
O(1)-padded decomposition scheme.

Question
Input: metric points in an online fashion from the shortest path metric of a planar
graph. Goal: Sample from an O(1)-padded decomposition scheme.

x1

Online Padded Decomposition

[Klein, Plotkin, Rao 93]: The shortest path metric of every planar graph admits an
O(1)-padded decomposition scheme.

Question
Input: metric points in an online fashion from the shortest path metric of a planar
graph. Goal: Sample from an O(1)-padded decomposition scheme.

x1 x2

x1

x1

x2

x2

· ·
3

3

Online Padded Decomposition

[Klein, Plotkin, Rao 93]: The shortest path metric of every planar graph admits an
O(1)-padded decomposition scheme.

Question
Input: metric points in an online fashion from the shortest path metric of a planar
graph. Goal: Sample from an O(1)-padded decomposition scheme.

x1 x2

x3

x1

x1

x2

x2

· ·
3

3

·

x3

x3

2

23

3

Online Padded Decomposition

[Klein, Plotkin, Rao 93]: The shortest path metric of every planar graph admits an
O(1)-padded decomposition scheme.

Question
Input: metric points in an online fashion from the shortest path metric of a planar
graph. Goal: Sample from an O(1)-padded decomposition scheme.

x1 x2

x3

x4

x1

x1

x2

x2

· ·
3

3

·

x3

x3

2

23

3

·
2

2

224

4

x4

x4

Outline of the talk

1 Introduction

2 Stochastic embedding into trees

3 Bartal 96 and Padded decompositions

4 Online Metric Embeddings

5 Spanning trees and MPX

6 Minor Free Graphs

Spanning Trees

Theorem ([FRT04],[Bar04] Stochastic embedding into trees)

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log n).

Suppose that we are given a graph G = (V ,E ,w), could we sample a spanning tree

of G with expected distortion O(log n)?

Spanning Trees

Theorem ([FRT04],[Bar04] Stochastic embedding into trees)

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log n).

Suppose that we are given a graph G = (V ,E ,w), could we sample a spanning tree

of G with expected distortion O(log n)?

The construction we saw [Bar96], as well as others are not into subgraphs.

Spanning Trees

Theorem ([FRT04],[Bar04] Stochastic embedding into trees)

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log n).

Suppose that we are given a graph G = (V ,E ,w), could we sample a spanning tree

of G with expected distortion O(log n)?

The construction we saw [Bar96], as well as others are not into subgraphs.

Theorem ([Abraham, Neiman 12] (improving over [AKPW95], [EEST05],
[ABN08]))

Every n-vertex graph G = (V ,E ,w) embeds into distribution D over it's spanning
trees with expected distortion Õ(log n).

Spanning Trees

Theorem ([FRT04],[Bar04] Stochastic embedding into trees)

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log n).

Theorem ([AN12] (improving over [AKPW95], [EEST05], [ABN08]))

Every n-vertex graph G = (V ,E ,w) embeds into distribution D over it's spanning
trees with expected distortion Õ(log n).

Question
Construct embedding into spanning trees with expected distortion O(log n).

Spanning Trees

Theorem ([FRT04],[Bar04] Stochastic embedding into trees)

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log n).

Theorem ([AN12] (improving over [AKPW95], [EEST05], [ABN08]))

Every n-vertex graph G = (V ,E ,w) embeds into distribution D over it's spanning
trees with expected distortion Õ(log n).

Question
Construct embedding into spanning trees with expected distortion O(log n).

We will see a recent, simple and elegant construction: [Becker, Emek, Gha�ari, Lenzen
24]. The expected distortion is O(log3 n), and it is based on [MPX13].

[Miller, Peng, Xu 2013] - clustering with exponential clocks

t1 t2

t3 t4

[Miller, Peng, Xu 2013] - clustering with exponential clocks

−5

−4

−3

−2

−1

1

2

0

δt1 = 4
δt2 = 2

δt3 = 1
δt4 = 4

t1 t2

t3 t4

[Miller, Peng, Xu 2013] - clustering with exponential clocks

−5

−4

−3

−2

−1

1

2

0

δt1 = 4
δt2 = 2

δt3 = 1
δt4 = 4

t1 t2

t3 t4

[Miller, Peng, Xu 2013] - clustering with exponential clocks

−5

−4

−3

−2

−1

1

2

0

δt1 = 4
δt2 = 2

δt3 = 1
δt4 = 4

t1 t2

t3 t4

[Miller, Peng, Xu 2013] - clustering with exponential clocks

−5

−4

−3

−2

−1

1

2

0

δt1 = 4
δt2 = 2

δt3 = 1
δt4 = 4

t1 t2

t3 t4

[Miller, Peng, Xu 2013] - clustering with exponential clocks

−5

−4

−3

−2

−1

1

2

0

δt1 = 4
δt2 = 2

δt3 = 1
δt4 = 4

t1 t2

t3 t4

[Miller, Peng, Xu 2013] - clustering with exponential clocks

−5

−4

−3

−2

−1

1

2

0

δt1 = 4
δt2 = 2

δt3 = 1
δt4 = 4

t1 t2

t3 t4

[Miller, Peng, Xu 2013] - clustering with exponential clocks

−5

−4

−3

−2

−1

1

2

0

δt1 = 4
δt2 = 2

δt3 = 1
δt4 = 4

t1 t2

t3 t4

[Miller, Peng, Xu 2013] - clustering with exponential clocks

δt1 = 4
δt2 = 2

δt3 = 1
δt4 = 4

t1 t2

t3 t4

Formally, for v ∈ V set fv (t) = δt − dG (v , t).

v joins the cluster Ct of the center t maximizing fv .

[Miller, Peng, Xu 2013] - clustering with exponential clocks

t1 t2

t3 t4

Formally, for v ∈ V set fv (t) = δt − dG (v , t).

v joins the cluster Ct of the center t maximizing fv .

If ∀t δt = 0, we get Voronoi partition - each vertex goes to the closest center.

[MPX13] produces a shifted Voronoi partition.

[Miller, Peng, Xu 2013] - clustering with exponential clocks

t1 t2

t3 t4

δt1 = 4
δt2 = 2

δt3 = 1
δt4 = 4

t1 t2

t3 t4

Formally, for v ∈ V set fv (t) = δt − dG (v , t).

v joins the cluster Ct of the center t maximizing fv .

If ∀t δt = 0, we get Voronoi partition - each vertex goes to the closest center.
[MPX13] produces a shifted Voronoi partition.

[Miller, Peng, Xu 2013] - clustering with exponential clocks

t1 t2

t3 t4

δt1 = 4
δt2 = 2

δt3 = 1
δt4 = 4

t1 t2

t3 t4

Formally, for v ∈ V set fv (t) = δt − dG (v , t).

v joins the cluster Ct of the center t maximizing fv .

δt sampled i.i.d. using exponential distribution with parameter Θ(∆
log n

).

Unfair race, different starting points: δt − dX(v, t)

Race of endurance: δt − dX(v, t)

Race of endurance: δt − dX(v, t)

runners are memoryless

δt ∼ Exp(Θ(∆
log n))

[Miller, Peng, Xu 2013] - clustering with exponential clocks
Formally, for v ∈ V set fv (t) = δt − dG (v , t).

δt1 = 4
δt2 = 2

δt3 = 1
δt4 = 4

t1 t2

t3 t4

[Miller, Peng, Xu 2013] - clustering with exponential clocks
Formally, for v ∈ V set fv (t) = δt − dG (v , t).

δt1 = 4
δt2 = 2

δt3 = 1
δt4 = 4

t1 t2

t3 t4

δt sampled i.i.d. using exponential distribution with parameter Θ(∆
log n

).

[Miller, Peng, Xu 2013] - clustering with exponential clocks
Formally, for v ∈ V set fv (t) = δt − dG (v , t).

δt1 = 4
δt2 = 2

δt3 = 1
δt4 = 4

t1 t2

t3 t4

δt sampled i.i.d. using exponential distribution with parameter Θ(∆
log n

).

Theorem ([MPX13])

The algorithm produces an (O(log n),∆)-padded decomposition.

Proof intuition - what makes it tick?
v joins the cluster Ct of the center t maximizing fv .

δt are samples i.i.d. using exponential distribution with parameter Θ(∆
log n

).

v
= BG(v, γ∆)Bv

Proof intuition - what makes it tick?
v joins the cluster Ct of the center t maximizing fv .

δt are samples i.i.d. using exponential distribution with parameter Θ(∆
log n

).

v

t
dG(v, t)

δt

fv(t) = δt − dG(v, t)

= BG(v, γ∆)Bv

Proof intuition - what makes it tick?
v joins the cluster Ct of the center t maximizing fv .

δt are samples i.i.d. using exponential distribution with parameter Θ(∆
log n

).

v

t
dG(v, t)

δt

fv(t) = δt − dG(v, t)

= BG(v, γ∆)Bv

fv(t1)fv(t2)fv(t3)

A race between potential centers.

Proof intuition - what makes it tick?
v joins the cluster Ct of the center t maximizing fv .

δt are samples i.i.d. using exponential distribution with parameter Θ(∆
log n

).

v

t
dG(v, t)

δt

fv(t) = δt − dG(v, t)

= BG(v, γ∆)Bv

fv(t1)

[fv(t1)− 2γ∆ , fv(t1)]

fv(t2)fv(t3)

A race between potential centers.

Points in Bv can only join the clusters of �almost winners�.

Proof intuition - what makes it tick?
v joins the cluster Ct of the center t maximizing fv .

δt are samples i.i.d. using exponential distribution with parameter Θ(∆
log n

).

v

t
dG(v, t)

δt

fv(t) = δt − dG(v, t)

= BG(v, γ∆)Bv

fv(t1)

[fv(t1)− 2γ∆ , fv(t1)]

fv(t2)fv(t3)

A race between potential centers.

Points in Bv can only join the clusters of �almost winners�.

If t2 is not an �almost winner�, all of Bv joins the cluster of t1.

Proof intuition - what makes it tick?

v

t
dG(v, t)

δt

fv(t) = δt − dG(v, t)

= BG(v, γ∆)Bv

fv(t1)

[fv(t1)− 2γ∆ , fv(t1)]

fv(t2)fv(t3)

Points in Bv can only join the clusters of �almost winners�.

If t2 is not an �almost winner�, all of Bv joins the cluster of t1.

By memoryless, Pr [fv (t1)− fv (t2) ≥ 2γ∆] ≥ Pr [δt1 ≥ 2γ∆] = e−γ·O(log n).

Proof intuition - what makes it tick?

v

t
dG(v, t)

δt

fv(t) = δt − dG(v, t)

= BG(v, γ∆)Bv

fv(t1)

[fv(t1)− 2γ∆ , fv(t1)]

fv(t2)fv(t3)

Points in Bv can only join the clusters of �almost winners�.

If t2 is not an �almost winner�, all of Bv joins the cluster of t1.

By memoryless, Pr [fv (t1)− fv (t2) ≥ 2γ∆] ≥ Pr [δt1 ≥ 2γ∆] = e−γ·O(log n).

Proof intuition - what makes it tick?

v

t
dG(v, t)

δt

fv(t) = δt − dG(v, t)

= BG(v, γ∆)Bv

fv(t1)

[fv(t1)− 2γ∆ , fv(t1)]

fv(t2)fv(t3)

Points in Bv can only join the clusters of �almost winners�.

If t2 is not an �almost winner�, all of Bv joins the cluster of t1.

By memoryless, Pr [fv (t1)− fv (t2) ≥ 2γ∆] ≥ Pr [δt1 ≥ 2γ∆] = e−γ·O(log n).

Theorem ([MPX13])

The algorithm produces an (O(log n),∆)-padded decomposition.

[BEGL24] Stochastic Embedding into Spanning Trees
Spanning Tree Algorithm (G ,X , x0,R)

Assumption: X ⊆ B(x0,R)

1 Sample r0 ∈ [1
2
, 2
3
] · R u.a.r.

2 X0 = B(x0, r0).

3 Cut edges: {(y1, x1), . . . , (yk , xk)}
4 Run [MPX13] on G [X \ X0]

Centers: x1, . . . , xk .
xi shift: δi − dG (x0, xi).
δi ∼ Exp(Θ(ϵ

log n
· R)).

5 Recurse: Ti = STA(G ,Xi , xi ,Ri)

6 T ← cut edges
⋃
{Ti}ki=0

.

R

x0

[BEGL24] Stochastic Embedding into Spanning Trees
Spanning Tree Algorithm (G ,X , x0,R)

Assumption: X ⊆ B(x0,R)

1 Sample r0 ∈ [1
2
, 2
3
] · R u.a.r.

2 X0 = B(x0, r0).

3 Cut edges: {(y1, x1), . . . , (yk , xk)}
4 Run [MPX13] on G [X \ X0]

Centers: x1, . . . , xk .
xi shift: δi − dG (x0, xi).
δi ∼ Exp(Θ(ϵ

log n
· R)).

5 Recurse: Ti = STA(G ,Xi , xi ,Ri)

6 T ← cut edges
⋃
{Ti}ki=0

.

r0
R

1
2R

2
3R

x0

[BEGL24] Stochastic Embedding into Spanning Trees
Spanning Tree Algorithm (G ,X , x0,R)

Assumption: X ⊆ B(x0,R)

1 Sample r0 ∈ [1
2
, 2
3
] · R u.a.r.

2 X0 = B(x0, r0).

3 Cut edges: {(y1, x1), . . . , (yk , xk)}
4 Run [MPX13] on G [X \ X0]

Centers: x1, . . . , xk .
xi shift: δi − dG (x0, xi).
δi ∼ Exp(Θ(ϵ

log n
· R)).

5 Recurse: Ti = STA(G ,Xi , xi ,Ri)

6 T ← cut edges
⋃
{Ti}ki=0

.

r0

X0

x0

[BEGL24] Stochastic Embedding into Spanning Trees
Spanning Tree Algorithm (G ,X , x0,R)

Assumption: X ⊆ B(x0,R)

1 Sample r0 ∈ [1
2
, 2
3
] · R u.a.r.

2 X0 = B(x0, r0).

3 Cut edges: {(y1, x1), . . . , (yk , xk)}

4 Run [MPX13] on G [X \ X0]
Centers: x1, . . . , xk .
xi shift: δi − dG (x0, xi).
δi ∼ Exp(Θ(ϵ

log n
· R)).

5 Recurse: Ti = STA(G ,Xi , xi ,Ri)

6 T ← cut edges
⋃
{Ti}ki=0

.

r0

X0

x7

x4
x3

x1

x2

y1

y2

y3

y4

y5

y7

x6

y6

x5

x0

[BEGL24] Stochastic Embedding into Spanning Trees
Spanning Tree Algorithm (G ,X , x0,R)

Assumption: X ⊆ B(x0,R)

1 Sample r0 ∈ [1
2
, 2
3
] · R u.a.r.

2 X0 = B(x0, r0).

3 Cut edges: {(y1, x1), . . . , (yk , xk)}
4 Run [MPX13] on G [X \ X0]

Centers: x1, . . . , xk .
xi shift: δi − dG (x0, xi).
δi ∼ Exp(Θ(ϵ

log n
· R)).

5 Recurse: Ti = STA(G ,Xi , xi ,Ri)

6 T ← cut edges
⋃
{Ti}ki=0

.

r0

X0

x7

x4
x3

x1

x2

y1

y2

y3

y4

y5

y7
X1

X2

X3

X7

X5

X6

X4

x6

y6

x5

x0

[BEGL24] Stochastic Embedding into Spanning Trees
Spanning Tree Algorithm (G ,X , x0,R)

Assumption: X ⊆ B(x0,R)

1 Sample r0 ∈ [1
2
, 2
3
] · R u.a.r.

2 X0 = B(x0, r0).

3 Cut edges: {(y1, x1), . . . , (yk , xk)}
4 Run [MPX13] on G [X \ X0]

Centers: x1, . . . , xk .
xi shift: δi − dG (x0, xi).
δi ∼ Exp(Θ(ϵ

log n
· R)).

5 Recurse: Ti = STA(G ,Xi , xi ,Ri)

6 T ← cut edges
⋃
{Ti}ki=0

.

W.h.p. ∀i , δi ≤ ϵR

r0

X0

x7

x4
x3

x1

x2

y1

y2

y3

y4

y5

y7
X1

X2

X3

X7

X5

X6

X4

x6

y6

x5

x0

[BEGL24] Stochastic Embedding into Spanning Trees
Spanning Tree Algorithm (G ,X , x0,R)

Assumption: X ⊆ B(x0,R)

1 Sample r0 ∈ [1
2
, 2
3
] · R u.a.r.

2 X0 = B(x0, r0).

3 Cut edges: {(y1, x1), . . . , (yk , xk)}
4 Run [MPX13] on G [X \ X0]

Centers: x1, . . . , xk .
xi shift: δi − dG (x0, xi).
δi ∼ Exp(Θ(ϵ

log n
· R)).

5 Recurse: Ti = STA(G ,Xi , xi ,Ri)

6 T ← cut edges
⋃
{Ti}ki=0

.

W.h.p. ∀i , δi ≤ ϵR

r0

X0

x7

x4
x3

x1

x2

y1

y2

y3

y4

y5

y7
X1

X2

X3

X7

X5

X6

X4

x6

y6

v
x5

x0

dG(x0, v)

[BEGL24] Stochastic Embedding into Spanning Trees
Spanning Tree Algorithm (G ,X , x0,R)

Assumption: X ⊆ B(x0,R)

1 Sample r0 ∈ [1
2
, 2
3
] · R u.a.r.

2 X0 = B(x0, r0).

3 Cut edges: {(y1, x1), . . . , (yk , xk)}
4 Run [MPX13] on G [X \ X0]

Centers: x1, . . . , xk .
xi shift: δi − dG (x0, xi).
δi ∼ Exp(Θ(ϵ

log n
· R)).

5 Recurse: Ti = STA(G ,Xi , xi ,Ri)

6 T ← cut edges
⋃
{Ti}ki=0

.

W.h.p. ∀i , δi ≤ ϵR

r0

X0

x7

x4
x3

x1

x2

y1

y2

y3

y4

y5

y7
X1

X2

X3

X7

X5

X6

X4

x6

y6

v
x5

x0

dG(x0, x5) + dG[X5]
(x5, v) ≤ +ϵRdG(x0, v)

[BEGL24] Stochastic Embedding into Spanning Trees
Spanning Tree Algorithm (G ,X , x0,R)

Assumption: X ⊆ B(x0,R)

1 Sample r0 ∈ [1
2
, 2
3
] · R u.a.r.

2 X0 = B(x0, r0).

3 Cut edges: {(y1, x1), . . . , (yk , xk)}
4 Run [MPX13] on G [X \ X0]

Centers: x1, . . . , xk .
xi shift: δi − dG (x0, xi).
δi ∼ Exp(Θ(ϵ

log n
· R)).

5 Recurse: Ti = STA(G ,Xi , xi ,Ri)

6 T ← cut edges
⋃
{Ti}ki=0

.

W.h.p. ∀i , δi ≤ ϵR

r0

X0

x7

x4
x3

x1

x2

y1

y2

y3

y4

y5

y7
X1

X2

X3

X7

X5

X6

X4

x6

y6

v
x5

x0

dG(x0, x5) + dG[X5]
(x5, v) ≤ +ϵRdG(x0, v)

≤ (1 + 2ϵ) · dG(x0, v)

[BEGL24] Stochastic Embedding into Spanning Trees
Spanning Tree Algorithm (G ,X , x0,R)

Assumption: X ⊆ B(x0,R)

1 Sample r0 ∈ [1
2
, 2
3
] · R u.a.r.

2 X0 = B(x0, r0).

3 Cut edges: {(y1, x1), . . . , (yk , xk)}
4 Run [MPX13] on G [X \ X0]

Centers: x1, . . . , xk .
xi shift: δi − dG (x0, xi).
δi ∼ Exp(Θ(ϵ

log n
· R)).

5 Recurse: Ti = STA(G ,Xi , xi ,Ri)

6 T ← cut edges
⋃
{Ti}ki=0

.

r0

X0

x7

x4
x3

x1

x2

y1

y2

y3

y4

y5

y7
X1

X2

X3

X7

X5

X6

X4

x6

y6

x5

x0

[BEGL24] Stochastic Embedding into Spanning Trees
Spanning Tree Algorithm (G ,X , x0,R)

Assumption: X ⊆ B(x0,R)

1 Sample r0 ∈ [1
2
, 2
3
] · R u.a.r.

2 X0 = B(x0, r0).

3 Cut edges: {(y1, x1), . . . , (yk , xk)}
4 Run [MPX13] on G [X \ X0]

Centers: x1, . . . , xk .
xi shift: δi − dG (x0, xi).
δi ∼ Exp(Θ(ϵ

log n
· R)).

5 Recurse: Ti = STA(G ,Xi , xi ,Ri)

6 T ← cut edges
⋃
{Ti}ki=0

.

r0

X0

x7

x4
x3

x1

x2

y1

y2

y3

y4

y5

y7
X1

X2

X3

X7

X5

X6

X4

x6

y6

v
x5

x0

dG(x0, x5) + dG[X5]
(x5, v) ≤ (1 + 2ϵ) · dG(x0, v)

[BEGL24] Stochastic Embedding into Spanning Trees
Spanning Tree Algorithm (G ,X , x0,R)

Assumption: X ⊆ B(x0,R)

1 Sample r0 ∈ [1
2
, 2
3
] · R u.a.r.

2 X0 = B(x0, r0).

3 Cut edges: {(y1, x1), . . . , (yk , xk)}
4 Run [MPX13] on G [X \ X0]

Centers: x1, . . . , xk .
xi shift: δi − dG (x0, xi).
δi ∼ Exp(Θ(ϵ

log n
· R)).

5 Recurse: Ti = STA(G ,Xi , xi ,Ri)

6 T ← cut edges
⋃
{Ti}ki=0

.

r0

X0

x7

x4
x3

x1

x2

y1

y2

y3

y4

y5

y7
X1

X2

X3

X7

X5

X6

X4

x6

y6

v
x5

x0

dG(x0, x5) + dG[X5]
(x5, v) ≤ (1 + 2ϵ) · dG(x0, v)

dT (x0, v) ≤ (1 + 2ϵ)O(log n) · dG(x0, v)

[BEGL24] Stochastic Embedding into Spanning Trees
Spanning Tree Algorithm (G ,X , x0,R)

Assumption: X ⊆ B(x0,R)

1 Sample r0 ∈ [1
2
, 2
3
] · R u.a.r.

2 X0 = B(x0, r0).

3 Cut edges: {(y1, x1), . . . , (yk , xk)}
4 Run [MPX13] on G [X \ X0]

Centers: x1, . . . , xk .
xi shift: δi − dG (x0, xi).
δi ∼ Exp(Θ(ϵ

log n
· R)).

5 Recurse: Ti = STA(G ,Xi , xi ,Ri)

6 T ← cut edges
⋃
{Ti}ki=0

.

r0

X0

x7

x4
x3

x1

x2

y1

y2

y3

y4

y5

y7
X1

X2

X3

X7

X5

X6

X4

x6

y6

v
x5

x0

dG(x0, x5) + dG[X5]
(x5, v) ≤ (1 + 2ϵ) · dG(x0, v)

dT (x0, v) ≤ (1 + 2ϵ)O(log n) · dG(x0, v)≤ 2 · dG(x0, v)
For ϵ = O(1

log n)

[BEGL24] Stochastic Embedding into Spanning Trees
Spanning Tree Algorithm (G ,X , x0,R)

Assumption: X ⊆ B(x0,R)

1 Sample r0 ∈ [1
2
, 2
3
] · R u.a.r.

2 X0 = B(x0, r0).

3 Cut edges: {(y1, x1), . . . , (yk , xk)}
4 Run [MPX13] on G [X \ X0]

Centers: x1, . . . , xk .
xi shift: δi − dG (x0, xi).
δi ∼ Exp(Θ(ϵ

log n
· R)).

5 Recurse: Ti = STA(G ,Xi , xi ,Ri)

6 T ← cut edges
⋃
{Ti}ki=0

.

Lemma 1: If u, v are separated
at scale R ⇒ dT (u, v) = O(R)

r0

X0

x7

x4
x3

x1

x2

y1

y2

y3

y4

y5

y7
X1

X2

X3

X7

X5

X6

X4

x6

y6

v
x5

x0

dG(x0, x5) + dG[X5]
(x5, v) ≤ (1 + 2ϵ) · dG(x0, v)

dT (x0, v) ≤ (1 + 2ϵ)O(log n) · dG(x0, v)≤ 2 · dG(x0, v)
For ϵ = O(1

log n)

u

1 Sample r0 ∈ [1
2
, 2
3
] · R u.a.r.

2 X0 = B(x0, r0).

3 Cut edges: {(y1, x1), . . . , (yk , xk)}
4 Run [MPX13] on G [X \ X0]

Centers: x1, . . . , xk .
xi shift: δi − dG (x0, xi).
δi ∼ Exp(Θ(ϵ

log n
· R)).

5 Recurse: Ti = STA(G ,Xi , xi ,Ri)

6 T ← cut edges
⋃
{Ti}ki=0

.

Lemma 1: If u, v are separated
at scale R ⇒ dT (u, v) = O(R)

Lemma 2:

Pr[PR(v) ̸= PR(u)] ≥

log2 n · dG (u,v)
R

r0

X0

x7

x4
x3

x1

x2

y1

y2

y3

y4

y5

y7
X1

X2

X3

X7

X5

X6

X4

x6

y6

v
x5

x0

u

γR

γ = dG(u,v)
R

For ϵ = O(1
log n)

1 Sample r0 ∈ [1
2
, 2
3
] · R u.a.r.

2 X0 = B(x0, r0).

3 Cut edges: {(y1, x1), . . . , (yk , xk)}
4 Run [MPX13] on G [X \ X0]

Centers: x1, . . . , xk .
xi shift: δi − dG (x0, xi).
δi ∼ Exp(Θ(ϵ

log n
· R)).

5 Recurse: Ti = STA(G ,Xi , xi ,Ri)

6 T ← cut edges
⋃
{Ti}ki=0

.

Lemma 1: If u, v are separated
at scale R ⇒ dT (u, v) = O(R)

Lemma 2:

Pr[PR(v) ̸= PR(u)] ≥

log2 n · dG (u,v)
R

r0

X0

x7

x4
x3

x1

x2

y1

y2

y3

y4

y5

y7
X1

X2

X3

X7

X5

X6

X4

x6

y6

v
x5

x0

u

γR

γ = dG(u,v)
R

Pr[PR(v) = PR(u)] ≥ Pr[B(v, γR) ⊆ PR(v)]

For ϵ = O(1
log n)

1 Sample r0 ∈ [1
2
, 2
3
] · R u.a.r.

2 X0 = B(x0, r0).

3 Cut edges: {(y1, x1), . . . , (yk , xk)}
4 Run [MPX13] on G [X \ X0]

Centers: x1, . . . , xk .
xi shift: δi − dG (x0, xi).
δi ∼ Exp(Θ(ϵ

log n
· R)).

5 Recurse: Ti = STA(G ,Xi , xi ,Ri)

6 T ← cut edges
⋃
{Ti}ki=0

.

Lemma 1: If u, v are separated
at scale R ⇒ dT (u, v) = O(R)

Lemma 2:

Pr[PR(v) ̸= PR(u)] ≥log2 n · dG (u,v)R

r0

X0

x7

x4
x3

x1

x2

y1

y2

y3

y4

y5

y7
X1

X2

X3

X7

X5

X6

X4

x6

y6

v
x5

x0

u

γR

γ = dG(u,v)
R

Pr[PR(v) = PR(u)] ≥ Pr[B(v, γR) ⊆ PR(v)]

≥ e−γ·log nϵR = e− log2 n·dG(u,v)
R

For ϵ = O(1
log n)

≈ 1− log2 n · dG(u,v)R

Lemma 1: If u, v are separated
at scale R ⇒ dT (u, v) = O(R)

Lemma 2:

Pr[PR(v) ̸= PR(u)] ≥log2 n · dG (u,v)R

E[dT (x , y)]

≤
log Φ∑
i=0

O(2i) · Pr [Pi(x) ̸= Pi(y)]

≤
log Φ∑
i=0

O(2i) · dX (x , y)
2i

·O(log2 n)

= O(log3 n) · dX (x , y) .

r0

X0

x7

x4
x3

x1

x2

y1

y2

y3

y4

y5

y7
X1

X2

X3

X7

X5

X6

X4

x6

y6

v
x5

x0

u

γR

γ = dG(u,v)
R

Pr[PR(v) = PR(u)] ≥ Pr[B(v, γR) ⊆ PR(v)]

≥ e−γ·log nϵR = e− log2 n·dG(u,v)
R

For ϵ = O(1
log n)

≈ 1− log2 n · dG(u,v)R

Outline of the talk

1 Introduction

2 Stochastic embedding into trees

3 Bartal 96 and Padded decompositions

4 Online Metric Embeddings

5 Spanning trees and MPX

6 Minor Free Graphs

Special Graph Families

Theorem ([FRT04],[Bar04] Stochastic embedding into trees)

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log n).

Planar.

Excluding a �xed minor.

Bounded treewidth.

Special Graph Families

Theorem ([FRT04],[Bar04] Stochastic embedding into trees)

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log n).

Tight!

Planar.

Excluding a �xed minor.

Bounded treewidth.

Special Graph Families

Theorem ([FRT04],[Bar04] Stochastic embedding into trees)

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log n).

Tight!

Try special graph families!

Planar.

Excluding a �xed minor.

Bounded treewidth.

Special Graph Families

Special graph families:

Planar.

Excluding a �xed minor.

Bounded treewidth.

Special Graph Families

Special graph families:

Planar.

Excluding a �xed minor.

Bounded treewidth.

Excluded as
a minor

Special Graph Families

Special graph families:

Planar.

Excluding a �xed minor.

Bounded treewidth.

1

1

1

1

1

1

2 2

2

2

2

2

3

3

3

3

3

4

4

4

4

4

5

6

7

8

9

10

11

12

1 2

3

4

5

6

7

8

9

10

11

12

Planar graphs into treewidth graphs

Theorem ([FRT04], improving [Bartal 96+98])

Every n-point metric space (X , d) embeds into distribution D over trees with expected
distortion O(log n).

Tight!

Planar graphs into trees, could we do better?

Planar graphs into treewidth graphs

Theorem ([FRT04], improving [Bartal 96+98])

Every n-point metric space (X , d) embeds into distribution D over trees with expected
distortion O(log n).

Tight!

Planar graphs into trees, could we do better? No!
[AKPW95]: [FRT04] is tight already for the n × n grid graph!

Planar graphs into treewidth graphs

Theorem ([FRT04], improving [Bartal 96+98])

Every n-point metric space (X , d) embeds into distribution D over trees with expected
distortion O(log n).

Tight!

Planar graphs into trees, could we do better? No!
Perhaps try a richer target space?

Planar graphs into treewidth graphs

Theorem ([FRT04], improving [Bartal 96+98])

Every n-point metric space (X , d) embeds into distribution D over trees with expected
distortion O(log n).

Tight!

Planar graphs into trees, could we do better? No!
Perhaps try a richer target space?
Planar graphs into low treewidth graphs, could we do better?

Planar graphs into treewidth graphs

Theorem ([FRT04], improving [Bartal 96+98])

Every n-point metric space (X , d) embeds into distribution D over trees with expected
distortion O(log n).

Tight!

Planar graphs into trees, could we do better? No!
Perhaps try a richer target space?
Planar graphs into low treewidth graphs, could we do better? No!

Theorem ([Chakrabarti, Ja�e, Lee, Vincent 08] Stochastic Lower Bound)

∀t, ∃ n-vertex planar graph G = (V ,E ,w) such that every stochastic embedding

into treewidth-t graphs incur distortion Ω(log n).

Planar graphs into treewidth graphs

Theorem ([CJLV08] Stochastic Lower Bound)

∀t, ∃ n-vertex planar graph G = (V ,E ,w) such that every stochastic embedding

into treewidth-t graphs incur distortion Ω(log n).

Theorem ([Fox-Epstein, Klein, Schild 19], improving [Eisenstat, Klein,
Mathieu 14] Planar into treewidth)

Consider planar graph G with diameter D and parameter ϵ ∈ (0, 1), then G embeds
into treewidth poly(1

ϵ
) graph with additive distortion ϵD.

Deterministically!

Planar graphs into treewidth graphs

Theorem ([CJLV08] Stochastic Lower Bound)

∀t, ∃ n-vertex planar graph G = (V ,E ,w) such that every stochastic embedding

into treewidth-t graphs incur distortion Ω(log n).

Theorem ([Fox-Epstein, Klein, Schild 19], improving [Eisenstat, Klein,
Mathieu 14] Planar into treewidth)

Consider planar graph G with diameter D and parameter ϵ ∈ (0, 1), then G embeds
into treewidth poly(1

ϵ
) graph with additive distortion ϵD. Deterministically!

Planar graphs into treewidth graphs

Theorem ([CJLV08] Stochastic Lower Bound)

∀t, ∃ n-vertex planar graph G = (V ,E ,w) such that every stochastic embedding

into treewidth-t graphs incur distortion Ω(log n).

Theorem ([FKS19] Planar into treewidth)

Consider planar graph G with diameter D and parameter ϵ ∈ (0, 1), then G embeds
into treewidth poly(1

ϵ
) graph with additive distortion ϵD. Deterministically!

D = maxu,v dG (u, v)

Planar graphs into treewidth graphs

Theorem ([CJLV08] Stochastic Lower Bound)

∀t, ∃ n-vertex planar graph G = (V ,E ,w) such that every stochastic embedding

into treewidth-t graphs incur distortion Ω(log n).

Theorem ([FKS19] Planar into treewidth)

Consider planar graph G with diameter D and parameter ϵ ∈ (0, 1), then G embeds
into treewidth poly(1

ϵ
) graph with additive distortion ϵD. Deterministically!

D = maxu,v dG (u, v)

f : G → H , tw(H) = poly(1
ϵ
) s.t. ∀u, v ,

dG (u, v) ≤ dH(f (u), f (v)) ≤ dG (u, v) + ϵD .

Planar graphs into treewidth graphs

Theorem ([FKS19] Planar into treewidth)

Consider planar graph G with diameter D and parameter ϵ ∈ (0, 1), then G embeds
into treewidth poly(1

ϵ
) graph with additive distortion ϵD. Deterministically!

D = maxu,v dG (u, v)

f : G → H , tw(H) = poly(1
ϵ
) s.t. ∀u, v ,

dG (u, v) ≤ dH(f (u), f (v)) ≤ dG (u, v) + ϵD .

[F., Le 22]: Deterministic embedding with
additive distortion ϵD into treewidth O(ϵ−1(log log n)2) graph.

Planar graphs into treewidth graphs

Theorem ([FKS19] Planar into treewidth)

Consider planar graph G with diameter D and parameter ϵ ∈ (0, 1), then G embeds
into treewidth poly(1

ϵ
) graph with additive distortion ϵD. Deterministically!

D = maxu,v dG (u, v)

f : G → H , tw(H) = poly(1
ϵ
) s.t. ∀u, v ,

dG (u, v) ≤ dH(f (u), f (v)) ≤ dG (u, v) + ϵD .

[F., Le 22]: Deterministic embedding with
additive distortion ϵD into treewidth O(ϵ−1(log log n)2) graph.

Applications to: PTAS for Vehicle routing,
EPTAS for metric ρ-dominating set, and metric ρ-isolated set.

Minor-free graphs into treewidth graphs

Theorem ([FKS19] Planar into treewidth)

Consider planar graph G with diameter D and parameter ϵ ∈ (0, 1), then G embeds
into treewidth poly(1

ϵ
) graph with additive distortion ϵD.

What about minor-free graphs?

Minor-free graphs into treewidth graphs

Theorem ([FKS19] Planar into treewidth)

Consider planar graph G with diameter D and parameter ϵ ∈ (0, 1), then G embeds
into treewidth poly(1

ϵ
) graph with additive distortion ϵD.

What about minor-free graphs? No!

Theorem ([Cohen-Addad, F., Klein, Le 20] Minor lower bound)

∃ n-vertex K6-free graph G = (V ,E ,w) s.t. every classic embedding
into o(

√
n)-treewidth graph incur additive distortion D

20
.

Minor-free graphs into treewidth graphs

Theorem ([FKS19] Planar into treewidth)

Consider planar graph G with diameter D and parameter ϵ ∈ (0, 1), then G embeds
into treewidth poly(1

ϵ
) graph with additive distortion ϵD.

What about minor-free graphs? No!

Theorem ([CFKL20] Minor lower bound)

∃ n-vertex K6-free graph G = (V ,E ,w) s.t. every classic embedding
into o(

√
n)-treewidth graph incur additive distortion D

20
.

Maybe Stochastic?

Minor-free graphs into treewidth graphs

Theorem ([CFKL20] Minor lower bound)

∃ n-vertex K6-free graph G = (V ,E ,w) s.t. every classic embedding
into o(

√
n)-treewidth graph incur additive distortion D

20
.

Theorem ([F., Le 22] Minor stochastic embedding (improving over
[CFKL20]))

For ϵ ∈ (0, 1), every n-point Kr -free graph with diameter D,

stochastically embeds into distribution D over Or (
(log log n)2

ϵ2
)-treewidth graphs

with expected additive distortion ϵD.

Minor-free graphs into treewidth graphs

Theorem ([FL22] Minor stochastic embedding (improving over [CFKL20]))

For ϵ ∈ (0, 1), every n-point Kr -free graph with diameter D,

stochastically embeds into distribution D over Or (
(log log n)2

ϵ2
)-treewidth graphs

with expected additive distortion ϵD.

∀u, v , and (f ,H) ∈ supp(D), dG (u, v) ≤ dH(f (u), f (v)), and

E(f ,H)∼D[dH(f (u), f (v))] ≤ dG (u, v) + ϵD .

Minor-free graphs into treewidth graphs

Theorem ([FL22] Minor stochastic embedding (improving over [CFKL20]))

For ϵ ∈ (0, 1), every n-point Kr -free graph with diameter D,

stochastically embeds into distribution D over Or (
(log log n)2

ϵ2
)-treewidth graphs

with expected additive distortion ϵD.

∀u, v , and (f ,H) ∈ supp(D), dG (u, v) ≤ dH(f (u), f (v)), and

E(f ,H)∼D[dH(f (u), f (v))] ≤ dG (u, v) + ϵD .

Applications to: PTAS for Vehicle routing.

Minor-free graphs into treewidth graphs

Theorem ([FL22] Minor stochastic embedding (improving over [CFKL20]))

For ϵ ∈ (0, 1), every n-point Kr -free graph with diameter D,

stochastically embeds into distribution D over Or (
(log log n)2

ϵ2
)-treewidth graphs

with expected additive distortion ϵD.

∀u, v , and (f ,H) ∈ supp(D), dG (u, v) ≤ dH(f (u), f (v)), and

E(f ,H)∼D[dH(f (u), f (v))] ≤ dG (u, v) + ϵD .

Applications to: PTAS for Vehicle routing.

A version of this embedding (called Ramsey type and clan) been used to obtain QPTAS
for the ρ-dominating/isolated set problems.

Minor-free graphs into treewidth graphs

Theorem ([FL22] Minor stochastic embedding (improving over [CFKL20]))

For ϵ ∈ (0, 1), every n-point Kr -free graph with diameter D,

stochastically embeds into distribution D over Or (
(log log n)2

ϵ2
)-treewidth graphs

with expected additive distortion ϵD.

Questions:

Remove dependency on n.

Improve the ginormous dependence on r (structure theorem).

Minor-free graphs into treewidth graphs

Theorem ([FL22] Minor stochastic embedding (improving over [CFKL20]))

For ϵ ∈ (0, 1), every n-point Kr -free graph with diameter D,

stochastically embeds into distribution D over Or (
(log log n)2

ϵ2
)-treewidth graphs

with expected additive distortion ϵD.

Questions:

Remove dependency on n.

Improve the ginormous dependence on r (structure theorem).

For planar graphs we have treewidth min{poly(ϵ−1),O(ϵ−1(log log n)2)}.
Can we get O(ϵ−1)?

Embedding into treewidth graphs with multiplicative distortion

Theorem ([CJLV08] Stochastic Lower Bound)

∀t, ∃ n-vertex planar graph G = (V ,E ,w) such that every stochastic embedding

into treewidth-t graphs incur distortion Ω(log n).

Embedding into treewidth graphs with multiplicative distortion

Theorem ([CJLV08] Stochastic Lower Bound)

∀t, ∃ n-vertex planar graph G = (V ,E ,w) such that every stochastic embedding

into treewidth-t graphs incur distortion Ω(log n).

What if we allow t to depend on G?

Embedding into treewidth graphs with multiplicative distortion

Theorem ([CJLV08] Stochastic Lower Bound)

∀t, ∃ n-vertex planar graph G = (V ,E ,w) such that every stochastic embedding

into treewidth-t graphs incur distortion Ω(log n).

What if we allow t to depend on G?

Theorem ([Carroll, Goel 04] Stochastic Lower Bound 2)

Every stochastic embedding of planar graphs into treewidth-t graphs with constant

expected distortion requires t = Ω(log n).

Embedding into treewidth graphs with multiplicative distortion

Theorem ([CJLV08]: constant treewidth ⇒ Ω(log n) expected distortion)

∀t, ∃ n-vertex planar graph G = (V ,E ,w) such that every stochastic embedding

into treewidth-t graphs incur distortion Ω(log n).

What if we allow t to depend on G?

Theorem ([CG04]: constant expected distortion ⇒ Ω(log n) treewidth)

Every stochastic embedding of planar graphs into treewidth-t graphs with constant

expected distortion requires t = Ω(log n).

Embedding into treewidth graphs with multiplicative distortion

Theorem ([CJLV08]: constant treewidth ⇒ Ω(log n) expected distortion)

∀t, ∃ n-vertex planar graph G = (V ,E ,w) such that every stochastic embedding

into treewidth-t graphs incur distortion Ω(log n).

What if we allow t to depend on G?

Theorem ([CG04]: constant expected distortion ⇒ Ω(log n) treewidth)

Every stochastic embedding of planar graphs into treewidth-t graphs with constant

expected distortion requires t = Ω(log n).

Theorem ([Cohen-Addad, Le, Pilipczuk, Pilipczuk 23])

∀ϵ ∈ (0, 1), every n-point Kr -minor free graph embeds into distribution over graphs
with treewidth Õr (ϵ

−1) · polylog(n) with expected distortion 1+ ϵ.

Embedding into treewidth graphs with multiplicative distortion

Theorem ([CLPP23])

∀ϵ ∈ (0, 1), every n-point Kr -minor free graph embeds into distribution over graphs
with treewidth Õr (ϵ

−1) · polylog(n) with expected distortion 1+ ϵ.

Applications to: QPTAS for capacitated Vehicle routing

(unit demand, general capacities).
QPTAS for facility location.
QPTAS for capacitated k-Median.

Embedding into treewidth graphs with multiplicative distortion

Theorem ([CLPP23])

∀ϵ ∈ (0, 1), every n-point Kr -minor free graph embeds into distribution over graphs
with treewidth Õr (ϵ

−1) · polylog(n) with expected distortion 1+ ϵ.

Applications to: QPTAS for capacitated Vehicle routing

(unit demand, general capacities).
QPTAS for facility location.
QPTAS for capacitated k-Median.

Theorem ([Chang, Cohen-Addad, Conroy, Le, Pilipczuk, Pilipczuk 25])

∀ϵ ∈ (0, 1), every n-point planar graph embeds into distribution over graphs with
treewidth O(ϵ−1 · log3 n) with expected distortion 1+ ϵ.

Embedding into treewidth graphs with multiplicative distortion

Theorem ([CLPP23])

∀ϵ ∈ (0, 1), every n-point Kr -minor free graph embeds into distribution over graphs
with treewidth Õr (ϵ

−1) · polylog(n) with expected distortion 1+ ϵ.

Theorem ([CCCLPP25])

∀ϵ ∈ (0, 1), every n-point planar graph embeds into distribution over graphs with
treewidth O(ϵ−1 · log3 n) with expected distortion 1+ ϵ.

Conjecture [CCCLPP25]

1+ ϵ expected distortion from planar graphs into treewidth O(ϵ−1 · log n) graphs.

Additional spin-o�s we didn't cover:

Räcke trees: embedding into trees with O(log n) expected congestion.

Ramsey trees: every metric contains a subset of n1−
1

k points that can be
embedded into a tree with distortion O(k) (worst case).

Clan: embedding into a single tree with (worst case) distortion O(k) such that

every vertex has n
1

k copies in expectation.

Scaling distortion: embedding such that ∀ϵ, at most ϵ ·
(
n
2

)
pairs have expected

distortion Ω(log 1

ϵ
).

Priority distortion: given ordering x1, x2, . . . , xn, embedding such that
∀i < j , E[dT (xi , xj)] = O(log i) · dX (xi , xj).
Dynamic: maintaining stochastic embedding into tree of a changing graph.

Distributed: sampling stochastic embedding in the CONGEST / LOCAL models.

Hop-constrained: embedding preserving the hop-distance d
(h)
G (u, v).

Digraphs into DAGS.

More?

Additional spin-o�s we didn't cover:
Räcke trees: embedding into trees with O(log n) expected congestion.

Ramsey trees: every metric contains a subset of n1−
1

k points that can be
embedded into a tree with distortion O(k) (worst case).

Clan: embedding into a single tree with (worst case) distortion O(k) such that

every vertex has n
1

k copies in expectation.

Scaling distortion: embedding such that ∀ϵ, at most ϵ ·
(
n
2

)
pairs have expected

distortion Ω(log 1

ϵ
).

Priority distortion: given ordering x1, x2, . . . , xn, embedding such that
∀i < j , E[dT (xi , xj)] = O(log i) · dX (xi , xj).
Dynamic: maintaining stochastic embedding into tree of a changing graph.

Distributed: sampling stochastic embedding in the CONGEST / LOCAL models.

Hop-constrained: embedding preserving the hop-distance d
(h)
G (u, v).

Digraphs into DAGS.

More?

Additional spin-o�s we didn't cover:
Räcke trees: embedding into trees with O(log n) expected congestion.

Ramsey trees: every metric contains a subset of n1−
1

k points that can be
embedded into a tree with distortion O(k) (worst case).

Clan: embedding into a single tree with (worst case) distortion O(k) such that

every vertex has n
1

k copies in expectation.

Scaling distortion: embedding such that ∀ϵ, at most ϵ ·
(
n
2

)
pairs have expected

distortion Ω(log 1

ϵ
).

Priority distortion: given ordering x1, x2, . . . , xn, embedding such that
∀i < j , E[dT (xi , xj)] = O(log i) · dX (xi , xj).
Dynamic: maintaining stochastic embedding into tree of a changing graph.

Distributed: sampling stochastic embedding in the CONGEST / LOCAL models.

Hop-constrained: embedding preserving the hop-distance d
(h)
G (u, v).

Digraphs into DAGS.

More?

Additional spin-o�s we didn't cover:
Räcke trees: embedding into trees with O(log n) expected congestion.

Ramsey trees: every metric contains a subset of n1−
1

k points that can be
embedded into a tree with distortion O(k) (worst case).

Clan: embedding into a single tree with (worst case) distortion O(k) such that

every vertex has n
1

k copies in expectation.

Scaling distortion: embedding such that ∀ϵ, at most ϵ ·
(
n
2

)
pairs have expected

distortion Ω(log 1

ϵ
).

Priority distortion: given ordering x1, x2, . . . , xn, embedding such that
∀i < j , E[dT (xi , xj)] = O(log i) · dX (xi , xj).
Dynamic: maintaining stochastic embedding into tree of a changing graph.

Distributed: sampling stochastic embedding in the CONGEST / LOCAL models.

Hop-constrained: embedding preserving the hop-distance d
(h)
G (u, v).

Digraphs into DAGS.

More?

Additional spin-o�s we didn't cover:
Räcke trees: embedding into trees with O(log n) expected congestion.

Ramsey trees: every metric contains a subset of n1−
1

k points that can be
embedded into a tree with distortion O(k) (worst case).

Clan: embedding into a single tree with (worst case) distortion O(k) such that

every vertex has n
1

k copies in expectation.

Scaling distortion: embedding such that ∀ϵ, at most ϵ ·
(
n
2

)
pairs have expected

distortion Ω(log 1

ϵ
).

Priority distortion: given ordering x1, x2, . . . , xn, embedding such that
∀i < j , E[dT (xi , xj)] = O(log i) · dX (xi , xj).
Dynamic: maintaining stochastic embedding into tree of a changing graph.

Distributed: sampling stochastic embedding in the CONGEST / LOCAL models.

Hop-constrained: embedding preserving the hop-distance d
(h)
G (u, v).

Digraphs into DAGS.

More?

Additional spin-o�s we didn't cover:
Räcke trees: embedding into trees with O(log n) expected congestion.

Ramsey trees: every metric contains a subset of n1−
1

k points that can be
embedded into a tree with distortion O(k) (worst case).

Clan: embedding into a single tree with (worst case) distortion O(k) such that

every vertex has n
1

k copies in expectation.

Scaling distortion: embedding such that ∀ϵ, at most ϵ ·
(
n
2

)
pairs have expected

distortion Ω(log 1

ϵ
).

Priority distortion: given ordering x1, x2, . . . , xn, embedding such that
∀i < j , E[dT (xi , xj)] = O(log i) · dX (xi , xj).

Dynamic: maintaining stochastic embedding into tree of a changing graph.

Distributed: sampling stochastic embedding in the CONGEST / LOCAL models.

Hop-constrained: embedding preserving the hop-distance d
(h)
G (u, v).

Digraphs into DAGS.

More?

Additional spin-o�s we didn't cover:
Räcke trees: embedding into trees with O(log n) expected congestion.

Ramsey trees: every metric contains a subset of n1−
1

k points that can be
embedded into a tree with distortion O(k) (worst case).

Clan: embedding into a single tree with (worst case) distortion O(k) such that

every vertex has n
1

k copies in expectation.

Scaling distortion: embedding such that ∀ϵ, at most ϵ ·
(
n
2

)
pairs have expected

distortion Ω(log 1

ϵ
).

Priority distortion: given ordering x1, x2, . . . , xn, embedding such that
∀i < j , E[dT (xi , xj)] = O(log i) · dX (xi , xj).
Dynamic: maintaining stochastic embedding into tree of a changing graph.

Distributed: sampling stochastic embedding in the CONGEST / LOCAL models.

Hop-constrained: embedding preserving the hop-distance d
(h)
G (u, v).

Digraphs into DAGS.

More?

Additional spin-o�s we didn't cover:
Räcke trees: embedding into trees with O(log n) expected congestion.

Ramsey trees: every metric contains a subset of n1−
1

k points that can be
embedded into a tree with distortion O(k) (worst case).

Clan: embedding into a single tree with (worst case) distortion O(k) such that

every vertex has n
1

k copies in expectation.

Scaling distortion: embedding such that ∀ϵ, at most ϵ ·
(
n
2

)
pairs have expected

distortion Ω(log 1

ϵ
).

Priority distortion: given ordering x1, x2, . . . , xn, embedding such that
∀i < j , E[dT (xi , xj)] = O(log i) · dX (xi , xj).
Dynamic: maintaining stochastic embedding into tree of a changing graph.

Distributed: sampling stochastic embedding in the CONGEST / LOCAL models.

Hop-constrained: embedding preserving the hop-distance d
(h)
G (u, v).

Digraphs into DAGS.

More?

Additional spin-o�s we didn't cover:
Räcke trees: embedding into trees with O(log n) expected congestion.

Ramsey trees: every metric contains a subset of n1−
1

k points that can be
embedded into a tree with distortion O(k) (worst case).

Clan: embedding into a single tree with (worst case) distortion O(k) such that

every vertex has n
1

k copies in expectation.

Scaling distortion: embedding such that ∀ϵ, at most ϵ ·
(
n
2

)
pairs have expected

distortion Ω(log 1

ϵ
).

Priority distortion: given ordering x1, x2, . . . , xn, embedding such that
∀i < j , E[dT (xi , xj)] = O(log i) · dX (xi , xj).
Dynamic: maintaining stochastic embedding into tree of a changing graph.

Distributed: sampling stochastic embedding in the CONGEST / LOCAL models.

Hop-constrained: embedding preserving the hop-distance d
(h)
G (u, v).

Digraphs into DAGS.

More?

Additional spin-o�s we didn't cover:
Räcke trees: embedding into trees with O(log n) expected congestion.

Ramsey trees: every metric contains a subset of n1−
1

k points that can be
embedded into a tree with distortion O(k) (worst case).

Clan: embedding into a single tree with (worst case) distortion O(k) such that

every vertex has n
1

k copies in expectation.

Scaling distortion: embedding such that ∀ϵ, at most ϵ ·
(
n
2

)
pairs have expected

distortion Ω(log 1

ϵ
).

Priority distortion: given ordering x1, x2, . . . , xn, embedding such that
∀i < j , E[dT (xi , xj)] = O(log i) · dX (xi , xj).
Dynamic: maintaining stochastic embedding into tree of a changing graph.

Distributed: sampling stochastic embedding in the CONGEST / LOCAL models.

Hop-constrained: embedding preserving the hop-distance d
(h)
G (u, v).

Digraphs into DAGS.

More?

Räcke trees: embedding into trees with O(log n) expected congestion.

Ramsey trees: every metric contains a subset of n1−
1

k points that can be
embedded into a tree with distortion O(k) (worst case).

Clan: embedding into a single tree with (worst case) distortion O(k) such that

every vertex has n
1

k copies in expectation.

Scaling distortion: embedding such that ∀ϵ, at most ϵ ·
(
n
2

)
pairs have expected

distortion Ω(log 1

ϵ
).

Priority distortion: given ordering x1, x2, . . . , xn, embedding such that
∀i < j , E[dT (xi , xj)] = O(log i) · dX (xi , xj).
Dynamic: maintaining stochastic embedding into tree of a changing graph.

Distributed: sampling stochastic embedding in the CONGEST / LOCAL models.

Hop-constrained: embedding preserving the hop-distance d
(h)
G (u, v).

Digraphs into DAGS.

More?

Thank you!

r̃5
x1r̃1

x2
r̃2

x3

r̃3 x5

x4
r̃4

x1 x2

x3

x4

x1

x1

x2

x2

· ·
3

3

·

x3

x3

2

23

3

·
2

2

224

4

x4

x4

δt1 = 4
δt2 = 2

δt3 = 1
δt4 = 4

t1 t2

t3 t4

fv(t1)

[fv(t1)− 2γ∆ , fv(t1)]

fv(t2)fv(t3)

r0

X0

x7

x4
x3

x1

x2

y1

y2

y3

y4

y5

y7
X1

X2

X3

X7

X5

X6

X4

x6

y6

x5

x0

Questions?

Outline of the talk

1 Introduction

2 Stochastic embedding into trees

3 Bartal 96 and Padded decompositions

4 Online Metric Embeddings

5 Spanning trees and MPX

6 Minor Free Graphs

	Introduction
	Stochastic embedding into trees
	Bartal 96 and Padded decompositions
	Online Metric Embeddings
	Spanning trees and MPX
	Minor Free Graphs

