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What is a t-spanner?

Given a geometric graph G = (V,E). A spanning subgraph G′ =
(V,E′) is a t-spanner of G for constant t ≥ 1 provided we have:

∀xy ∈ E(G), dG′(x, y) ≤ t · |xy|



What is a t-spanner?

Sample goals for spanning subgraphs:

1. small spanning ratio

2. sparse graph

3. low maximum degree

4. high connectivity

5. low weight

6. robust (i.e. fault tolerant)

7. small diameter
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Given a geometric graph G, find a path from a vertex vsrc
to a vertex vdst online.
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Online Routing

In the weakest model, the routing algorithm must decide given:

1. vcur , the current vertex,

2. vdst , the destination, and

3. N(vcur ), the neighbors of vcur .

An online strategy is oblivious if it makes a decision based only on the
above information (memoryless).
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Online Routing

In the weakest model, the routing algorithm must decide given:

1. vcur , the current vertex,

2. vdst , the destination, and

3. N(vcur ), the neighbors of vcur .

An online strategy is oblivious if it makes a decision based only on the
above information (memoryless).

Models are sometimes strengthened to include:

1. The routing algorithm has some local memory

2. Additional bits of information are stored with vcur



Online Routing

The routing ratio is essentially the worst spanning ratio of the path
returned by a routing algorithm.

Goals for routing algorithms:

1. Low routing ratio

2. Use of little or no local memory

3. Require little information stored with the vertices

4. Low number of edges in the path (when one exists)

5. Simple



Online Routing

The routing ratio is essentially the worst spanning ratio of the path
returned by a routing algorithm.

Want to use the geometry of the graph to compete against routing
tables. Also, by exploiting the geometry, we make the algorithms easier
to adapt in a dynamic setting.



1. Construction of plane constant spanners

2. Routing algorithms on plane constant spanners

Focus for this talk



Question:

Does the standard Delaunay triangulation of a point set have
constant spanning ratio?



Standard Delaunay triangulation is a constant spanner:

Dobkin, Friedman and Supowit (1990) showed that the Delaunay trian-
gulation is a 5.08-spanner.
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Standard Delaunay triangulation is a constant spanner:

• When a one-sided Voronoi path does not exist, then shortcuts need
to be taken.

• Dobkin, Friedman and Supowit (1990) showed how to construct a
path in the Delaunay triangulation using shortcuts that is not longer
than about 5.08 times the Euclidean distance between the endpoints.
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Standard Delaunay triangulation is a constant spanner:

• When a one-sided Voronoi path does not exist, then shortcuts need
to be taken.

• Dobkin, Friedman and Supowit (1990) showed how to construct a
path in the Delaunay triangulation using shortcuts that is not longer
than about 5.08 times the Euclidean distance between the endpoints.

• Keil and Gutwin (1992) improved this bound to 2.42.

• Xia (2011) shows a bound of 1.998.
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Standard Delaunay triangulation is a constant spanner:

Open Question:

What is the spanning ratio of the Delaunay Triangulation?

The best known upper bound on the spanning ratio is 1.998.
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Standard Delaunay triangulation is a constant spanner:

What about lower bounds?



Standard Delaunay triangulation is a constant spanner:

π/2 is a lower bound on the spanning ratio of Delaunay



Standard Delaunay triangulation is a constant spanner:

Is π/2 the right answer?
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Standard Delaunay triangulation is a constant spanner:

dd

a

b

1.581 > π/2 ≈ 1.571

B., Devroye, Loffler, Snoeyink, Verma (2009)



Standard Delaunay triangulation is a constant spanner:

Xia and Zhang (2011):



Standard Delaunay triangulation is a constant spanner:

Xia and Zhang (2011):

Lower Bound ≈ 1.593



Standard Delaunay triangulation is a constant spanner:

Open Question:

What is the spanning ratio of the Delaunay Triangulation?

The bound on the spanning ratio lies between 1.593 and 1.998.



Plane Spanners:

Question:

What is a lower bound on the spanning ratio that a planar
graph can achieve on every point set?
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√
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√
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Lower Bounds:

√
2 is a trivial lower bound.

Can we do better?

Mulzer (2004) showed that every triangulation of a regular
21-gon has spanning ratio at least 1.41611 ≈

√
2.005367532

Regular 15-gon: 1.40898
Regular 17-gon: 1.40875
Regular 18-gon: 1.38170



Lower Bounds:

√
2 is a trivial lower bound.

Can we do better?

Every triangulation of a regular 23-gon has spanning
ratio at least 1.4308 [Dumitrescu and Ghosh (2018)]



Open Question:

What is the best lower bound for the spanning ratio of a tri-
angulation?

Specifically, is there a t > 1.4308 such that given a point set
P , every triangulation of P has spanning ratio at least t?

The spanning ratio of plane spanners lies between 1.4308 and
1.998

Recall that the lower bound for Delaunay triangulations is
1.593.



Question:

Can we do better if the points are in convex position?



Amani et al. (2016):

Every set of points in convex position has a linear size spanner whose
spanning ratio is 1.88.
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Every set of points in convex position has a linear size spanner whose
spanning ratio is 1.88.

Points in Convex Position:



Tan et al. (2019) showed that the Delaunay triangulation
of a set of points in convex position has spanning ratio at
most 1.83.

Points in Convex Position:



Open Question:

What is the best spanning ratio for points in convex position?

The spanning ratio of plane spanners of points lying in con-
vex position is some value between 1.4308 and 1.83 and for
Delaunay triangulations, it is between 1.581 and 1.83.



Question:

Are Delaunay graphs still constant spanners if we change the
empty region from a disk to something else?



Delaunay Graphs with other types of empty regions:
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Proof Idea:

When the empty region is a square as opposed to a circle, (i.e. L1 or
L∞ metric), Chew (1986) showed that the spanning ratio of the L1 or
L∞ Delaunay triangulation is

√
10 ≈ 3.16.
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4 + 2

√
2 ≈ 2.61 and the bound is TIGHT!
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Delaunay Graphs with other types of empty regions:

Bonichon, Gavoille, Hanusse and Perković (2015) improved this to√
4 + 2

√
2 ≈ 2.61 and the bound is TIGHT!

van Renssen, Sha, Sun and Wong (2023) generalized this result to
empty-rectangle Delaunay

B., de Carufel, Njoo (2025) generalized this to parallelograms.

Chew (1989) showed that the empty equilateral triangle Delaunay is a
2-spanner.

Denis, Perković and Turkoglu (2021) showed that the empty hexagon
Delaunay is a 2-spanner

When the empty region is a square as opposed to a circle, (i.e. L1 or
L∞ metric), Chew (1986) showed that the spanning ratio of the L1 or
L∞ Delaunay triangulation is

√
10 ≈ 3.16.



Delaunay Graphs with other types of empty regions:

C Spanning Ratio Routing Ratio

Triangle 2 [Chew 89] 5/
√
3 [B. et al 15]

Square
√
4 + 2

√
2 [Bonichon et al. 15]

√
10 [Chew 89]

Pentagon ≈ 4.640 * ≈ 4.640*
Hexagon 2 [Perkovic et al. 21] ≈ 6.429*
Septagon ≈ 8.53 * ≈ 8.53*
Octagon ≈ 4.05 * ≈ 4.05*
Circle ≈ 1.998 [Xia 13] ≈ 3.56 [B. et al. 24]

*B., Carufel, Stuart 24
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Delaunay Graphs with other types of empty regions:

Lower bound construction:

Spanning ratio ≈ 2.61



Delaunay Graphs with other types of empty regions:

Dennis, Perkovic and Turkoglu (2020) showed a spanning ratio of 2
for Empty Hexagon Delaunay.

Their lower bound construction is similar to that of squares.



When the empty region is an equilateral triangle, Chew (1989) showed
a spanning ratio of 2.

Delaunay Graphs with other types of empty regions:
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Connection between △-Delaunay and θ-graphs

Bonichon, Gavoille, Hannuse, Ilcinkas [2010]

There is a 1-1 correspondence between half-θ and △-Delaunay



Connection between △-Delaunay and θ-graphs
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1. If A is empty, then δ(u,w) ≤ |ub|+ |bw|

2. If B is empty, then δ(u,w) ≤ |ua|+ |aw|

3. otherwise, δ(u,w) ≤ max{|ua|+ |aw|, |ub|+ |bw|}
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Connection between △-Delaunay and θ-graphs

B., Fagerburg, van Ressen, Verdenschot [2011]

A B
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Generalized Delaunay Graphs:

B., Carmi, Collette, and Smid (2008) showed that the Delaunay graph
defined by a distance function based on a convex shape C is a t-
spanner where t depends only on the shape of the C.
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Generalized Delaunay Graphs:

B., Carmi, Collette, and Smid (2008) showed that the Delaunay graph
defined by a distance function based on a convex shape C is a t-
spanner where t depends only on the shape of the C.

Spanning ratio depends on
P(C)/W(C)

P(C) = Perimeter of C

W(C) = Width of C



Generalized Delaunay Graphs:

B., Carmi, Collette, and Smid (2008) showed that the Delaunay graph
defined by a distance function based on a convex shape C is a t-
spanner where t depends only on the shape of the C.

Main idea: Let G be the Delaunay graph based on convex shape C.

• G is plane.

• G satisfies the α-diamond property.

• The stretch factor of any one-sided path in G is bounded by a
constant.

• Shortcuts can be made similar to Dobkin et al.’s proof when
the path is not one-sided.
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A planar graph has the α diamond-property provided that the fol-
lowing holds for every edge.
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Diamond Property:

A planar graph has the α diamond-property provided that the fol-
lowing holds for every edge.

• Das and Joseph (1989) showed that triangulations with the α-
diamond property have spanning ratio 8π2/α2 sin2(α/4).

• B., Lee and Smid (2007) slightly improved the spanning ratio
8(π − α)2/α2 sin2(α/4).

The Delaunay triangulation, the greedy triangulation and the mini-
mum weight triangulation are all α-diamond triangulations for some
constant α.



Question:

Are there bounded degree subgraphs of Delaunay graphs that
are constant spanners?



Bounded Degree Spanners:

Authors Deg Ratio

B., Gudmundsson, and Smid (2002) 27 8.27
Li and Wang (2003) 23 6.44
B., Smid and Xu (2006) 17 23.58
Kanj and Perkovic (2008) 14 2.92
B., Hill and Smid (2018) 8 4.42
B., Carmi and Chaitman (2010) 7 11.6
Bonichon et al. (2010) 6 6
Bonichon et al. (2015) 4 156.82
Kanj et al. (2017) 4 20
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Bounded Degree - Proof Idea:

Compute a Delaunay Triangulation of the point set.

Compute a low-degree numbering of the vertices.

Build the spanner by processing each vertex in reverse order.

B., Smid, Xu (2006)



Bounded Degree - Proof Idea:

After a vertex is processed, never touch it again.

At the end of the construction, every vertex has degree at most 17.
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Degree six 6-spanner:

Bonichon, Gavoille, Hanusse, Perkovic (2010)
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Open Question:

What is the smallest degree that can be achieved?

• If planarity constraint is removed, Das and Heffernan (1996)
showed that one can construct graphs with constant spanning
ratio and maximum degree 3.

• With planarity constraint, is there a lower bound that is greater
than 3? That is can we show the following:
∀t ∃n ∃|P | = n every max degree 3 plane graph with vertex set
P has spanning ratio greater than t.
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Question:

Can we do better if points are in convex position?

Authors Deg Ratio

Kanj et al. (2017) 3 20
Biniaz et al. (2017) 3 5.19
Bakhshesh and Farshi (2020) 3 5.19
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• Kanj et al. showed that degree 3 is optimal when planarity is
a constraint by showing that:
∀t ∃n ∃|P | = n every max degree 2 plane graph with vertex set
P has spanning ratio greater than t.

• Dumitrescu and Ghosh (2018) showed a lower bound of 2.732
for max degree 3 planar graphs.



Open Question:

What is the best bound for bounded degree spanners?

• Kanj et al. showed that degree 3 is optimal when planarity is
a constraint by showing that:
∀t ∃n ∃|P | = n every max degree 2 plane graph with vertex set
P has spanning ratio greater than t.

• Dumitrescu and Ghosh (2018) showed a lower bound of 2.732
for max degree 3 planar graphs.

For plane max deg 3, the bound lies between 2.73 and 5.19.



Thank you.




